Skip to content

🔧 Data Analysis Tools

📈 Visualization Stack

Meerschaum comes with a pre-configured data visualization stack so that you can spend your time on analysis rather than configuring servers.

Example Grafana Dashboard

🐼 Pandas Integration

If you use pandas, Meerschaum lets you tap into your datastreams as DataFrames.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
>>> import meerschaum as mrsm
>>>
>>> weather_pipe = mrsm.Pipe('plugin:noaa', 'weather')
>>>
>>> ### Optionally filter by datetime or other parameters.
>>> df = weather_pipe.get_data(
...   begin = '2020-01-01',
...   end = '2021-01-01',
...   params = {'station': ['KATL', 'KCEU']},
... )
>>>

You can create new pipes on any instance from a DataFrame and index column names.

1
2
3
4
5
6
7
8
>>> import meerschaum as mrsm, pandas as pd
>>> df = pd.read_csv('data.csv')
>>> csv_pipe = mrsm.Pipe(
...   'csv', 'weather',
...   instance='sql:local',
...   columns={'datetime': 'timestamp', 'id': 'station'},
... )
>>> csv_pipe.sync(df)

What are instances?

A Meerschaum instance is a connector to a database or API that itself contains Meerschaum pipes. Connectors, such as database connections, are represented in the format type:label.

The instance sql:local defaults to a built-in SQLite database.

You can also forego pipes and access tables directly.

1
2
3
4
5
6
7
>>> import meerschaum as mrsm, pandas as pd
>>>
>>> conn = mrsm.get_connector()
>>> df = pd.read_csv('data.csv')
>>>
>>> ### Wrapper around `df.to_sql()`.
>>> conn.to_sql(df, chunksize=1000)

Read a table or query into a Pandas DataFrame with conn.read():

1
2
3
4
>>> import meerschaum as mrsm
>>> mrsm.get_connector().read('table')
   id            datetime
0   1 2021-06-06 12:00:00

🧙‍♂️ SQLAlchemy Integration

If you're already using SQLAlchemy, Meerschaum can fit neatly into your workflow.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
>>> import meerschaum as mrsm
>>> from meerschaum.utils.sql import get_sqlalchemy_table
>>> conn = mrsm.get_connector()
>>>
>>> ### Directly access the `sqlalchemy` engine.
>>> print(conn.engine)
Engine(postgresql://mrsm:***@localhost:5432/meerschaum)
>>>
>>> table = get_sqlalchemy_table('table', connector=conn)
>>> query = sqlalchemy.insert(table).values({'foo': 1, 'bar': 2})
>>>
>>> conn.exec(query)
<sqlalchemy.engine.cursor.LegacyCursorResult object at 0x7fbe992e4190>

You can select a single value with conn.value():

1
2
3
4
5
6
7
8
9
>>> import meerschaum as mrsm
>>> conn = mrsm.get_connector()
>>> query = ("SELECT datetime "
...          "FROM table "
...          "WHERE id = 1 "
...          "ORDER BY datetime DESC "
...          "LIMIT 1")
>>> conn.value(query)
datetime.datetime(2021, 6, 6, 12, 0)

⌨️ SQL CLI

The sql command lets you quickly interact with your databases.

For certain flavors, Meerschaum is integrated with tools from the dbcli project that let you drop into an interactive SQL database environment.

The sql command also lets you read from tables or execute queries on any of your databases directly from the command line.