
Practical Target-Based Synchronization
Strategies for Immutable Time-Series Data

Tables

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Computer Science

by

Bennett Meares

December 2021

Accepted by:

Dr. Amy Apon, Committee Chair

Professor Mitch Shue

Dr. David White

Abstract

As the Internet of Things and industrial monitoring of utilities grow, effi-

ciently synchronizing immutable time-series data streams between databases becomes

a pressing issue. Extracting data from critical production databases demands careful

consideration of the stress imposed on the machines, so synchronization strategies are

required to minimize the transfer of duplicate data and the load imposed on remote

sources.

Literature on the synchronization problem is generalized to arbitrary tables

and does not consider the characteristics of time-series data streams, so research

was required to investigate methods to quickly synchronize source and target time-

series data tables. This thesis examines immutable time-series scenarios and synchro-

nization strategies to answer the following question: given several scenarios, which

target-based immutable time-series synchronization strategies best optimize run-time,

bandwidth, and accuracy?

The strategies explored in this research are implemented into the Meerschaum

system, a project intended to leverage these time-series concepts for production de-

ployments. As a practical demonstration, these strategies are used to continuously

cache Clemson University’s utilities data.

ii

Acknowledgements

This thesis would not have been possible without support from many people in my

life, and for this encouragement I am extremely grateful. I would like to extend my

thanks to the following people in particular:

• Professor Mitch Shue and Dr. Amy Apon for their diligence and valuable

insight which helped me organize my ideas into this academic paper.

• Dr. David White, Snowil Lopes, and Tim Howard for taking a chance on

me in CEVAC and giving me space to grow and test my ideas.

• Zach Smith, Drew Emery, and Harrison Hall for their unending encour-

agement and strong friendship. Special thanks to Zach for lending me his math-

ematical prowess when comprehending CPISync.

• Summer Robinson for patiently listening to me ramble about synchronization

strategies as we drove the van across the continent.

• The FOSS community which continues to inspire me to write the best soft-

ware I can.

iii

Table of Contents

Title Page . i

Abstract . ii

Acknowledgments . iii

List of Figures . v

Nomenclature . vi

1 Introduction . 1
1.1 Synchronization in Practice . 2
1.2 Related Works . 6
1.3 Overview of the Algorithm . 19

2 Scenarios . 24
2.1 Append-Only Data Streams . 25
2.2 Backlogged Data . 29

3 Strategies . 45
3.1 Speed-First: Simple Syncs . 45
3.2 No-Compromises Accuracy: Iterative Syncs 48
3.3 Best of Both Worlds: Corrective Syncs 53

4 Experimental Results . 56
4.1 Comparing Classes of Strategies . 59
4.2 Ranking Strategies . 77

5 Conclusion . 82
5.1 Choosing a Strategy . 82
5.2 Future Work . 85
5.3 Summary . 88

Bibliography . 89

iv

List of Figures

1.1 An example of Simple Backtrack Sync 21

2.1 A known BTI and multiple sensors 28
2.2 Datetime boundaries and known backlogged data 32
2.3 Constructing discontinuous samples 38
2.4 An example of Iterative Simple Sync 44

4.1 Baseline daily metrics . 60
4.2 Baseline summary bar charts . 61
4.3 Baseline summary radar chart . 62
4.4 Simple Syncs summary bar charts . 64
4.5 Simple Syncs daily metrics . 66
4.6 Simple Syncs summary bar charts . 66
4.7 Simple Syncs summary radar chart 67
4.8 Iterative Syncs daily metrics . 69
4.9 Iterative Syncs summary bar charts 70
4.10 Iterative Syncs summary radar chart 71
4.11 Bounded vs unbounded Iterative Syncs 72
4.12 Corrective Syncs daily metrics . 74
4.13 Corrective Syncs summary bar charts 75
4.14 Bounded Corrective Syncs summary bar charts 75
4.15 Corrective Syncs summary radar chart 76
4.16 Limitations of the summary bar charts 77
4.17 Choice Indices weighted for one metric 78
4.18 Choice Indices weighted for two metrics 79
4.19 Choice Indices weighted for three metrics 80

v

Nomenclature

Pipe

Meerschaum representation of time-series data streams. A pipe corresponds to

a target table and the metadata required to synchronize it.

Sample

Rows fetched from a source or target table used in the synchronization proce-

dure.

ART Approximation Reconciliation Tree

A data structure which combines properties of the Patricia Trie, Merkle Tree,

and Bloom Filter to quickly approximate the difference between sets.

BTI Backtrack Interval

The amount of time to backtrack from the RT to create the ST .

CPI Characteristic Polynomial Interpolation

A method of set reconciliation via rational interpolation of two sets’ character-

istic polynomials, functions whose zeros are the elements of the corresponding

sets.

ET End Time

The newest boundary timestamp for selecting new rows.

vi

ETL Extract, Transform, Load

A common data engineering procedure for copying and manipulating data from

multiple sources and inserting into a single store.

IBF Invertible Bloom Filter

A variation of the Bloom Filter which allows set items to be retrieved and the

difference between sets calculated.

IBLT Invertible Bloom Lookup Table

A variation of the Invertible Bloom Filter which allows for key-value pairs.

RT Reference Time

The reference timestamp for the synchronization algorithm. If the RT cannot

be determined, then no optimizations may be made.

SQL Structured Query Language

The standard language for modifying and retrieving data from relational databases.

The PostgreSQL dialect is employed in this thesis.

ST Start Time

The oldest boundary timestamp for selecting sample rows.

TBDS Target-Based Database Synchronization

An algorithm for determining rows missing from a target table without altering

the schema of the source database.

vii

Chapter 1

Introduction

Many real-world data streaming applications generate immutable time-series

data streams. Particularly in the growing IoT industry, numerous commercial and

open-source time-series data management systems has emerged, such as the studies

published by Jensen et al. [2017], Pelkonen et al. [2015], Wang et al. [2020], Yang et al.

[2019], and Rhea et al. [2017]. A persistent problem when working with time-series

data is how to regularly and efficiently synchronize historical data between databases,

such as when copying records from a production server to an analytical database.

Simple strategies may work well for a few, small tables, but as the number of

data streams grows, so too does the need to reduce the processing and bandwidth

requirements per transaction. For example, copying a table of a few thousand rows

might only take a second, but updating several growing tables with millions of rows

each requires careful planning to rapidly synchronize changes.

1

1.1 Synchronization in Practice

Many situations rely on the efficient synchronization of time-series data, and this

section addresses case studies in the areas of industry, science, and finance.

1.1.1 Smart Buildings

Many institutions retrofit their facilities into “smart” buildings to monitor

utilities usage and reduce carbon emissions [Lazarova-Molnar and Mohamed, 2019].

Oftentimes, legacy systems simply insert sensor readings into large database tables

and therefore were not initially intended for frequent access. Due to the critical nature

of these systems, external resources must be allocated for analysis, and sub-streams

of data must be regularly synchronized from the source database.

One practical example is Clemson University’s utilities data analytics system,

which routinely syncs data from several production databases into an analytical cache

database, on which further ETL steps are taken. One of the production databases is

a 2014 Microsoft SQL Server which contains a table of five billion rows that grows by

tens of thousands of rows per day (with sensors reporting at frequencies ranging from

once per minute to hourly), resulting in a table size of roughly 300 GB. Although the

link between the databases is fairly large (approximately one gigabit of bandwidth),

queries on the production database and data transferred over the network must be

kept to a minimum to avoid long delays or overloading mission-critical infrastructure.

Therefore a set of strategies was required to readily fetch new data for analysis without

abusing the sensitive remote servers.

2

1.1.2 Environmental Observations

Observational environmental data inherently contain a time dimension, and

given a high temporal frequency, the volume of data grows rapidly. Inserting readings

from environmental sensors into the source database is an append-only procedure

because the new readings are guaranteed to be unique, but as data are replicated and

the overall system grows in complexity, opportunities to save resources arise.

Consider the large-scale environmental monitoring that the National Oceanic

and Atmospheric Administration (NOAA) undertakes. NOAA operates several satel-

lite programs to capture environmental data, which are archived and distributed

through the Comprehensive Large Array-Data Stewardship System (CLASS). One of

these programs whose data are available in CLASS is the Joint Polar Satellite Sys-

tem (JPSS), a collaborative program between NOAA and NASA. To save bandwidth,

data from the JPSS satellites are captured, processed, validated, and aggregated by

the JPSS Ground System before being ingested by CLASS:

The Data Processing Node (DPN) processes mission data into raw, sensor

and environmental data products. Currently NOAA has JPSS-provided

DPN implementations to minimize WAN communications utilization. [Vyas,

2019]

The transmission and storage of time-series data within JPSS and other NOAA

programs are optimized internally, but external users must choose how to extract new

data from CLASS. Users may specify datetime boundaries when requesting data, and

given this read-only client-server model, synchronization strategies may be employed

to minimize bandwidth and the demand imposed on NOAA’s public servers.

3

Another notable example is the public weather API provided by NOAA and the

National Weather Service (NWS). The API provides access to atmospheric readings

(temperature, humidity, cloud coverage, etc.) from weather stations across the United

States, mostly in regional airports. The records are reported hourly and are usually

available within three hours, and the most recent week of data may be accessed.

Due to the scale of the operation, records are occasionally backlogged or mod-

ified, and outages are not uncommon. The API is designed for interactive applica-

tions, but these characteristics make building a historical data set complicated. To

efficiently and accurately build a historical data set, a synchronization strategy is

required. The API is integrated into Meerschaum through the noaa plugin.

1.1.3 Financial Transactions

Another area where synchronizing time-series data is important is the financial

sector. Financial transactions are, for the most part, event-based data streams which

share many similarities with the time-series data streams mentioned above. A key

distinction between event streams and “regular” time-series data streams is frequency;

whereas sensor-based data streams produce regular readings, event streams generate

irregular intervals. This characteristic introduces more hurdles when synchronizing:

Is a gap of missing rows due to an outage or just a feature of the data

stream?

How can backlogged rows be detected and accounted for?

One practical example of a company wrangling with the synchronization prob-

lem is M1 Finance’s fraud-detection system [Onica, 2020]. M1 regularly parses several

data streams (e.g. login attempts and transactions) for detecting suspicious activity

and for internal analysis. To synchronize data for the analysts, M1 streams login

4

attempts with AWS Data Migration Service into their S3 warehouse bucket as a col-

lection of Parquet files. The data warehouse, which is roughly 400 GB in size, grows

by one to five GB per day with frequencies ranging between hundreds to thousands

of events per second. The analysts execute queries on the warehouse using Amazon

Redshift Spectrum, a federated SQL query execution engine which bypasses tradi-

tional ETL and allows queries to be run on a Redshift cluster without completely

loading the source data into tables. This architecture can dynamically create com-

pute resources, thereby shifting the analytical demand away from production servers.

Additional caching is done by their BI tools to further reduce processing and network

demand.

Because M1 Finance controls the source database, steps were able to be taken

to offload the analytical demand away from the production machines. When an

architecture is designed where changes from the source database are pushed to an

intermediate store (in this case the S3 bucket), then demand from resolving problems

like backlogging are pushed “down the chain” to the analytical layer. The approach

to use Amazon Redshift Spectrum and S3 saves disk space but still requires careful

consideration of data retention and handling changed records.

Another example to consider is the transactions API provided by Apex Clear-

ing Corporation, the clearing house behind M1 Finance. Like the CLASS interface

mentioned in subsection 1.1.2, Apex Clearing offers a tool to extract transaction data

over a given interval. The API which powers the tool may be accessed with a web

driver, and the extracted data are an example of the kind of read-only access that de-

mands a synchronization strategy to update a historical data set. The API is adapted

to the Meerschaum system via the apex plugin.

5

1.2 Related Works

Earlier database synchronization studies have produced many efficient algo-

rithms, and awareness of existing work is necessary when creating novel strategies.

These set reconciliation algorithms are generalized and as such are limited in capabil-

ities. This thesis is intended to demonstrate how the inclusion of common properties

like a datetime axis greatly extends design possibilities and optimization opportuni-

ties.

1.2.1 Hashing Partitions

Target-Based Database Synchronization

The constraints of target-based synchronization are addressed by Ahluwalia

et al. [2010]. To detect changes in a read-only source table, Ahluwalia et al. propose

an algorithm similar to rsync [Tridgell and Mackerras, 1996] called Target-Based

Database Synchronization (TBDS) in which tables are partitioned and hashed, and

target partitions with different hashes from the source are replaced. The framework

for this approach is later implemented in Iterative Syncs (section 3.2) with the primary

distinction that TBDS uses hashing to detect mutability but Iterative Syncs rely on

row-counts because tables are assumed to be immutable.

Synchronization Algorithms based on Message Digest

Specifically in the realm of mobile devices, Choi et al. [2010] propose Syn-

chronization Algorithms based on Message Digest (SAMD). SAMD takes a multi-

staged approach during which tables of hash values are stored and compared to detect

which rows must be synchronized. This algorithm requires that the source and target

databases must maintain a message digest table and therefore allow write access on

6

the source database, thereby breaking the target-based and read-only constraints out-

lined by Ahluwalia et al. [2010]. The core principle of comparing hashes nonetheless

proves valuable when designing target-based synchronization strategies.

1.2.2 Characteristic Polynomial Interpolation

CPISync

Minsky and Trachtenberg [2001] propose a set reconciliation algorithm using

the properties of polynomials, first implemented as CPISync by Trachtenberg et al.

[2002] as a novel approach for synchronizing PDAs between PCs.

CPISync optimizes network load by only transmitting the rational values from

evaluating the data sets’ characteristic polynomials on each host. The overall perfor-

mance of CPISync is tied to a number of samples (m̄) necessary to solve the system of

equations to recover the differences between the sets. Therefore, CPISync is best used

when little data have changed between hosts and conserving bandwidth is paramount.

Read below to better understand CPISync.

1. A characteristic polynomial of a set S = {x1, x2, ..., xn} has the following form,

such that the zeroes of the function are the elements of S.

χS(Z) =
n∏
i=1

(Z − xi)

2. The ratio between characteristic polynomials of two sets is equal to the ratio of

7

the characteristic polynomials of the differences between the sets.

∆A = SA − SB

∆B = SB − SA
χA(Z)

χB(Z)
=
χ∆A

(Z)

χ∆B
(Z)

3. A large enough value for m̄ must be determined to account for the number

of differences between the sets (m̄ = m∆A
+ m∆B

), and a predetermined set

of values (of size m̄) is evaluated for the data sets’ characteristic polynomials

on each host. The ratio between the evaluations is equal to the ratio of the

difference sets.

The following calculations are performed over F13.

m̄ = 4

k = [1 .. m̄]

SZ = −k = {−1,−2,−3,−4}

SA = {1, 3, 5, 7, 9}

SB = {1, 3, 5, 7}

χSA
(Z) = (Z − 1)(Z − 3)(Z − 5)(Z − 7)(Z − 9)

χSB
(Z) = (Z − 1)(Z − 3)(Z − 5)(Z − 7)

8

Zk χA(Z) χB(Z) χA(Z) / χB(Z)

-1 8 7 3

-2 5 9 2

-3 9 9 1

-4 0 7 0

4. The rational function χ∆A
(Z)/χ∆B

(Z) can be recovered through rational func-

tion interpolation.

R(Z) =
P (Z)

Q(Z)
=
χA(Z)

χB(Z)
=
χ∆A

(Z)

χ∆B
(Z)

In cases such as those addressed in chapter 2 where SB is a subset of SA, ∆B

will always be the null set, and the recovered polynomial will only contain the

elements of ∆A.

SA = {1, 3, 5, 7, 9}

SB = {1, 3, 5, 7}

∆B = ∅

∴
χA(Z)

χB(Z)
=
χ∆A

(Z)

1
= χ∆A

(Z) = P (Z) = R(Z)

The polynomial R(Z) can be represented as a the sum of a series of coefficients

multiplied by growing powers of Z.

R(Zk) = χ∆A
(Zk) =

m̄∑
i=0

piZ
i
k = p0 + p1Zk + p2Z

2
k + ... + pm̄Z

m̄
k

The coefficients of R(Z) can determined by solving a system of linear equations

9

from the points (Zk,
χA(Zk)
χB(Zk)

) collected from the hosts.



Z0
1 Z1

1 Z2
1 Z3

1

Z0
2 Z1

2 Z2
2 Z3

2

Z0
3 Z1

3 Z2
3 Z3

3

Z0
4 Z1

4 Z2
4 Z3

4





p0

p1

p2

p3


=



R1

R2

R3

R4


p = {4, 1, 0, 0}

R(Z) = Z + 4

5. The zeroes of the recovered interpolated function R(Z) correspond to ∆A (cal-

culations performed over F13).

SA = {1, 3, 5, 7, 9}

SB = {1, 3, 5, 7}

∆A = {9}

R(9) = 9 + 4 = 0

Partitioned-CPISync

As part of the e-Triage project [Greiner and Donner, 2010] (sponsored by the

German Federal Ministry of Education and Research), Tang et al. [2010] expand upon

the work of Trachtenberg et al. [2002] and compare several synchronization strategies

in the context of satellite communications where conserving bandwidth is crucial and

latency is especially high. Tang et al. [2010] compare three different synchronization

mechanisms: Slow Sync as a baseline, Maatkit and the algorithms provided by the

toolkit, and a modified version of CPISync dubbed Partitioned-CPISync. Partitioned-

10

CPISync is designed to account for scenarios where m̄ is unknown. The algorithm re-

cursively partitions the data sets and executes CPISync (referred to as Basic-CPISync

in the paper) when the size of a partition is below the threshold (mp < m̄).

Priority CPISync

Jin et al. [2012] also take the work of Trachtenberg et al. [2002] to a more

practical level with Priority CPISync (P-CPI). Like Partitioned-CPISync, P-CPI

partitions the data sets and calls CPISync on individual partitions. The primary

distinctions for P-CPI is the paper’s probability analysis which demonstrates the

number of CPISync invocations to be O(ηm log(ηm)) with high probability of at

least 1− 1
ηm

(with a worst-case of O(mb) and best case of O(m log(m)).

Efficient Synchronization over Broadcast Networks

Like Tang et al. [2010], Muhammad et al. [2013] explore CPISync for satel-

lite communications. Muhammad et al. consider CPISync’s role in the distributed

databases context and explore several network topologies and techniques for obtain-

ing differences across a broadcast medium. Specifically, the authors consider a mesh

network (in which each node syncs with its peers), a star network where the mas-

ter node broadcasts all of the packets and nodes accept or drop packets, and a star

network with network coding on packets which have not been correctly received on

all nodes. The paper demonstrated how the number of packets transmitted scales as

functions of the number of users and differences between nodes. Despite introduc-

ing processing delays, the network coding star topology was found to minimize the

transmitted packets in most cases.

11

1.2.3 Space-Efficient Approximate Synchronization

Bloom Filters

Bloom Filters have been used to determine set membership since the 1970s

[Bloom, 1970]. Algorithms which utilize Bloom Filters benefit from their space-

efficiency and unique capability to quickly query tables where no clear index can

be constructed, such as text-based information retrieval. Bloom Filters are well-

researched and are often implemented into popular database systems [Byali et al.,

2020].

The original Bloom Filter is a probabilistic and space-efficient structure for

determining set membership with a low false-positive rate. It consists of a bit array

of length m and k hash functions which map set items to indices — integers in the

range [0,m). The filter supports two operations: add() and query(). To add elements

to the Bloom Filter, k indices are calculated by hash functions hk(x), and the bits

in the array at the corresponding indices are set to 1. When querying an item’s

membership, its indices are calculated and checked in the bit array. If all bits at the

indices are 1, the item is probably in the set, but if any of the bits are 0, the item is

definitely not in the set.

Approximation Reconciliation Trees

Due to the significant computation required for exact synchronization tech-

niques (such as CPISync per Trachtenberg et al. [2002]), Byers et al. [2002] instead

offer an approximate solution with greatly reduced computational complexity called

an Approximation Reconciliation Tree (ART) which combines properties of existing

approximation structures, namely Bloom Filters, Patricia Tries [Knuth, 1973], and

Merkle Trees [Merkle, 1980].

12

An ART represents a set as a Patricia Trie to structure searches and uses a

Merkle Tree to make searching the Patricia Trie feasible. Merkle Trees represent sets

as a tree of hash values such that the hash of a node is dependent on the hashes of its

children. Finally, the ART summarizes the Patricia Trie and Merkle Tree construc-

tion as a Bloom Filter, which is the message transmitted during the synchronization

process. Byers et al. note that the use of the summary Bloom Filter nearly eliminates

collisions in the Merkle Tree and avoids complications from collapse operations when

comparing across Patricia Tries. The authors conduct experiments to evaluate the

accuracy and speed performances of ART and conclude that the speed of ART is

inverse to the number of corrections and outperforms standard Bloom Filters for set

differences less than 2% with two correction passes or differences less than 30% for

no correction passes.

Invertible Bloom Filters

Eppstein and Goodrich [2010] introduce the Invertible Bloom Filter (IBF), a

variation of the standard Bloom Filter (and extension of the counting Bloom Filter)

which allows set items to be retrieved and differences calculated. Rather than a simple

bit array, the array of the IBF contains three fields: count, idSum, and hashSum.

When adding an element into an IBF, the same k indices are produced by hash

functions hk(x). The count fields of the cells at the generated indices are incremented,

the value of the element is added to the idSum fields, and the resulting hash value

of an additional hash function g(x) is added to the hashSum fields. Finally, an

additional fallback Bloom Filter with the same number of cells and two randomized

hash functions f1(x) and f2(x) is used for elements which are difficult to recover from

the primary Bloom Filter.

The IBF yields a major advantage over a regular Bloom Filter: set items

13

may be retrieved from the filter and therefore the difference between two sets may be

calculated from two filters. Like CPISync, two filters may be independently evaluated

on separate hosts and the difference between the sets derived by subtracting the

contents of the filters (though not directly subtracting the filters, which was later

added in a later revision of the IBF [Eppstein et al., 2011]).

Invertible Bloom Lookup Tables

Goodrich and Mitzenmacher [2011] extend the IBF to include key-value pairs

and name the variation the Invertible Bloom Lookup Table (IBLT). The authors

describe the changes made to the IBF as “deceptively simple” and explain in-depth

the application of the IBLT in the database reconciliation space.

Like the IBF, the IBLT includes three fields: count, keySum, and valueSum.

Similar to the fields of the IBF, these fields contain the sums of the values mapped

to the cell, but rather than deriving a dedicated hash value (the purpose of g(x) in

the IBF), the provided keys and values are used to update the fields.

Difference Digest

Eppstein et al. [2011] put the IBF to use as a component of the Difference

Digest, a structure for set reconciliation. Because the efficiency of the IBF (and Bloom

Filters in general) depends on its size, Eppstein et al. include a Strata Estimator

to gauge the size of the difference between the sets (m̄ in the case of CPISync).

Additionally, to allow for filter subtraction, the authors tweak the manner in which

idSum and hashSum fields are updated: rather than simple addition and subtraction,

the fields are updated with the XOR of the elements. This has the effect of producing

negative counts which did not appear in the original implementation of the IBF.

To evaluate the efficacy of the Difference Digest, Eppstein et al. compare its

14

performance against three strategies: (1) Approximate Reconciliation Trees (ART),

(2) CPISync, and (3) a näıve approach of trading a sorted list of the target table’s

keys (referred to as List). The authors note that without precomputation, Differ-

ence Digest is significantly slower than List, but with precomputation and small set

differences (less than 15%), Difference Digest can outperform the näıve approach by

an order of magnitude. Additionally, the authors demonstrate how the bandwidth

performance of List and ART improves as the set difference grows because the two

approaches encode the target set.

As demonstrated in subsection 4.1.3, the authors note that CPISync is an

ideal choice for preserving bandwidth and achieving an accurate result at a steep

cost of expensive computation. For small set differences, both Difference Digests

and CPISync require significantly less bandwidth than ART and List. The authors

conclude that precomputed Difference Digests are superior in situations of constrained

computation where the difference between the sets is small.

Key-Value Storage System Synchronization in Peer-to-Peer Environments

Similar to this thesis, Pham [2014] discusses several set reconciliation algo-

rithms in the context of peer-to-peer key-value synchronizations between mobile de-

vices. Among these algorithms are ART, CPISync, and IBFSync as well as log-based,

timestamp-based, and näıve approaches. Pham categorizes the algorithms according

to their behaviors: (1) communication rounds (bounded versus unbounded), (2) ac-

curacy (exact versus approximate), and (3) awareness of prior context (e.g. log-based

approaches that require metadata or context-free strategies like CPISync). Pham

then proposes a novel algorithm named ASync which consists of first completing an

approximate synchronization via a regular Bloom Filter then conducting an exact

synchronization via an IBF to capture the remaining differences.

15

To demonstrate the performance of ASync, Pham evaluates the communica-

tion costs, processing time, and synchronization time of two of the discussed algo-

rithms (along with a näıve approach): IBFSync and ASync. The two algorithms are

compared against several degrees of changes of the source table, and the author con-

cludes that the two-phase architecture of ASync leads to considerable improvements

over IBFSync in terms of communications cost, processing time, and synchronization

time.

Cuckoo Filters

Fan et al. [2014] note the space efficiency and limitations of standard Bloom

Filters [Pagh et al., 2005] and consider variations of the Bloom Filter designed to ad-

dress these limitations (such as the false-positive rate and deletion support), namely

Counting Bloom Filters [Fan et al., 2000], Blocked Bloom Filters [Putze et al., 2010],

d -left Counting Bloom Filters [Bonomi et al., 2006], and Quotient Filters [Bender

et al., 2012]. Although these variations accommodate the shortcomings of the stan-

dard Bloom Filter, the improvements come at the cost of reduced space efficiency.

Fan et al. instead propose a replacement for the Bloom Filter called the Cuckoo Fil-

ter which offers support for adding and removing items while outperforming Bloom

Filters. Additionally, the authors experimentally demonstrate that Cuckoo Filters

outperform the stated Bloom Filter variations.

Similar in structure to the standard Bloom Filter, the underlying structure

and hashing scheme of the Cuckoo Filter are based on Cuckoo Hash Tables [Pagh

and Rodler, 2004]. A basic Cuckoo Hash Table consists of an array of “buckets” and

hash functions h1(x) and h2(x) which determine the indices of candidate cells for

items. An unoccupied candidate cells is selected if available, otherwise an occupied

cell is chosen, and the existing occupant is displaced (hence the name cuckoo hashing).

16

The Cuckoo Filter employs Cuckoo Hash Tables for set reconciliation by means

of fingerprinting and partial key cuckoo hashing. When inserting items, a fingerprint

and candidate index are calculated, and the index of the alternate cell is derived by

an XOR of the first hash function. Because buckets may contain duplicate finger-

prints, the fingerprint size may be kept small to reduce size requirements of the entire

structure.

Variations of the Cuckoo Filter include the Conditional Cuckoo Filter [Ting

and Cole, 2021] and Adaptive Cuckoo Filter [Mitzenmacher et al., 2020] which extend

Cuckoo Filters by allowing for duplicate keys and significantly reduce the false positive

rate, respectively.

XOR Filters

Noting the efficiency of Bloom and Cuckoo Filters, Graf and Lemire [2020]

implement an approach called the Bloomier Filter [Chazelle et al., 2004] and name

the implementation the XOR Filter. The underlying structure consists of an array

slightly larger than the cardinality of the set. Three hash functions h1(x), h2(x),

and h3(x) generate indices of items in each third of the array. This is intended to

maintain an aggregated XOR value of the three array locations that is equal to the

item’s fingerprint.

The authors discuss in depth the benchmark results of several variations of the

Bloom Filter, Cuckoo Filter, Blocked Bloom Filter, and the XOR Filter. The XOR

Filter outperforms each structure in speed and space requirements with the exception

of the Blocked Bloom Filter in speed but not space. They conclude that although

the construction of the XOR Filter is roughly twice as slow as a regular Bloom Filter,

this cost is amortized over many queries, and memory requirements are reduced by

approximately 15%.

17

1.2.4 Summary

From Bloom Filters in the 1970s through CPISync in the 2000s and Cuckoo

Filters in the 2020s, advancements continue to be made in the database reconciliation

space. This thesis aims to address an overlooked aspect of the set reconciliation prob-

lem: synchronizing immutable time-series data streams. The inclusion of a datetime

axis expands the tools available when designing synchronization algorithms, and the

following sections focus on taking advantage of this property when determining which

data to fetch from the source database. The works discussed may be leveraged in the

filter() stage of the synchronization procedure, so to further research for immutable

time-series situations, the rest of this thesis is dedicated to exploring novel strategies

for fetching source and target samples.

18

1.3 Overview of the Algorithm

The basic stages of the synchronization algorithm are fetch (Extract and

Transform), filter, and insert (Load). These steps make up a kind of ETL pro-

cess specifically tuned for time-series data. The implementations of fetch(), filter(),

and insert() are mostly language- and protocol-independent and may be further op-

timized in production (for example, the filter() function may precede fetch() per

CPISync; see subsection 3.2.4).

1.3.1 The synchronize() Procedure

The basic algorithm introduced below may be referred to as Simple Backtrack Sync

(subsection 3.1.2).

1. Determine the “reference time” (RT) datetime.

If none is provided, use the latest timestamp value from the target table as the

RT . If no value is found, no optimizations may be made and the entire source

table must be fetched.

The RT will be the reference point for the synchronization.

2. Determine the “backtrack interval” (BTI).

If none is provided, use a default value of one minute.

The BTI “walks back” the RT to catch rows that were backlogged during the

last synchronization.

3. Derive the “start time” (ST) timestamp by subtracting the BTI from

the RT .

The ST will also be None if the RT could not be determined.

19

4. Fetch a source and target sample, each with rows greater than the

ST .

If the ST is None, the target sample does not need to be fetched.

5. Filter out rows of the target sample from the source sample.

This may be skipped if the target sample was not fetched.

6. Insert the filtered sample into the target table.

Therefore, the pseudocode for this algorithm would be the following:

procedure synchronize(Source, Target, ReferenceT ime, BacktrackInterval)

if ReferenceT ime is None then

ReferenceT ime← latest(Target)

StartT ime← ReferenceT ime−BacktrackInterval

. StartT ime will be None if ReferenceT ime is still None. /

SourceSample← fetch(Source, StartT ime)

if StartT ime is None then

FilteredSample← SourceSample

else

TargetSample← fetch(Target, StartT ime)

FilteredSample← filter(SourceSample, TargetSample)

insert(Target, FilteredSample)

The figure below illustrates a scenario where new data are fetched, filtered, and

inserted into the target table.

20

Figure 1.1: An example of Simple Backtrack Sync

21

1.3.2 The fetch() Function

The fetch() function retrieves sample rows from a table, and because the

source database may be a sensitive production server, one optimization goal during

the fetch stage is to design a straightforward query which minimizes data sent over

a network link. An example of fetch() per Simple Sync in the form of a SQL query

would look like the following:

SELECT *

FROM source

WHERE datetime > '2021-01-01 00:00:00'::TIMESTAMP

1.3.3 The filter() Function

The idea behind the filter() function is to remove rows found in the target

sample from the source sample. Below is a simple (although inefficient) pseudocode

representation of filter().

function filter(SourceSample, TargetSample)

if TargetSample is None then

return SourceSample

F ilteredSample← Table()

for all row ∈ SourceSample do

if row /∈ TargetSample then

insert(FilteredSample, row)

return FilteredSample

Assuming the source table has datetime and id indices, an approximate SQL query

for the filter() function would look like the following:

22

SELECT source_sample.*

FROM source_sample

LEFT JOIN target_sample ON (

source_sample.id = target_sample.id

AND source_sample.datetime = target_sample.datetime

)

WHERE target_sample.datetime IS NULL

The above query performs as expected for immutable data. The following

implementation in the popular Python data science library pandas considers all of

the columns, not just the indices, so modified rows would be included in the filtered

sample.

filtered_sample = source_sample[

~source_sample.fillna(custom_nan).apply(tuple, 1).isin(

target_sample.fillna(custom_nan).apply(tuple, 1)

)

].reset_index(drop=True)

One critical aspect of the Python implementation of the filter() function is

that the order of columns must be retained. If the source table suddenly were to

change the order of its columns, then all of the samples would appear to be new.

Therefore, in the practical Meerschaum implementation, the order of columns in the

source sample is enforced to be the same as the target.

1.3.4 The insert() Function

Once rows are filtered, the last step is to update the target table. For im-

mutable data streams, the data are inserted into the target. The specific implemen-

tation depends on the environment (e.g. database flavor, protocol, implementation),

but for the most part a series of INSERT statements may be generated, such as the

default behavior of DataFrame.to_sql() in pandas. Additional implementations may be

written to take advantage of database flavors such as the PostgreSQL’s COPY FROM

STDIN WITH CSV functionality [Meares, 2021a].

23

Chapter 2

Scenarios

Generating and appending data from sensors is a mostly straightforward task:

take a reading, submit to an endpoint, and insert into the store. Complications arise

when tables need to be synced between disconnected databases. The simple approach

would be to drop target tables and continuously copy the source (i.e. Näıve Sync,

see subsection 4.1.1), but characteristics of the scenario may be exploited to more

efficiently synchronize the tables.

Despite the restrictions of immutability and a datetime axis, there exists sub-

stantial variability between time-series data streams. The frequency, temporal resolu-

tion, number of IDs, and prevalence of backlogging are among properties of scenarios

which influence the performance and design of synchronization strategies. The fol-

low sections detail factors of certain scenarios and ways to use these aspects when

designing strategies.

24

2.1 Append-Only Data Streams

2.1.1 A Single, Simple ID

The first scenario will consist of a single sensor that regularly emits a reading

(e.g. hourly) and each time appends a record into a table. A basic record consists

of three columns: an eight-byte timestamp, four-byte integer ID, and an eight-byte

float (double precision) value, which would translate to the following SQL query:

INSERT INTO source (

datetime, id, value

) VALUES (

'2021-01-01 00:00:00'::TIMESTAMP, 1, 1.0

);

This growing table will be the source table. The target table will reside on

another database, which has no direct connection to the source database. Connecting

the target and source databases will be our syncing service.

There are several aspects of this scenario that we can use to design our syncing

strategy. First, time only moves in one direction. We can assume that no records

will be backlogged into the source table. Second, there is only a single stream of data

(one sensor). This allows us to use the datetime index as the primary method of

determining which rows have already been accounted for.

For this scenario, the ideal syncing procedure is a simplified version of the

overview introduced in section 1.3 called Simple Sync (subsection 3.1.1) and is as

follows:

1. Determine the most recent datetime from the target to be the “start time”

(ST).

This will be a lightweight operation because the datetime column is indexed.

2. Fetch data from the source that is newer than the ST .

25

The efficiency of this step depends on whether the source is indexed by datetime.

3. Insert the fetched data into the target table.

A SQL query for fetching new rows may be akin to the following:

SELECT *

FROM source

WHERE datetime > '2021-01-01 00:00:00'::TIMESTAMP

2.1.2 Multiple Simple IDs

The second scenario is similar to the first; the only difference is that two

sensors will be reporting to the source table. In this case, we assume that the sensors

report within the same minute interval. Several attributes of this scenario allow us

to design an appropriate strategy:

1. The data stream has datetime and ID indices.

2. Rows are immutable.

3. New rows always have later datetime values than existing rows.

4. Both sensors report within a known interval of each other.

Given these characteristics, the simple algorithm described in section 1.3 ap-

plies to this scenario. The notable difference from the previous scenario is that a

backtrack interval (BTI) — one minute in this case — is subtracted from the most

recent datetime (ST) so that new rows from both IDs are selected from the source.

A SQL query for this approach may look like the following:

SELECT *

FROM source

WHERE datetime > (

'2021-01-01 01:00:00'::TIMESTAMP
- INTERVAL '1 minute'

)

26

Consider the figure below which illustrates why the basic algorithm works in

this scenario. The key factor is that the sensors “walk in-step,” i.e. after applying

the known BTI, the table may be synchronized like a single data stream.

27

Figure 2.1: A known BTI can synchronize multiple sensors which “walk in-step”
within a known interval.

28

2.2 Backlogged Data

2.2.1 A Single ID with Known Backlogged Data

The above strategies rely on the assumption that no rows will be backlogged

into the source table. The BTI can catch small amounts of recently backlogged data,

but the size of the interval window is the inversely proportional to the performance

of the synchronization process.

Consider the single, append-only situation from subsection 2.1.1. If an old row

is inserted into the source table three days after the most recent rows — perhaps due

to an outage — then the aforementioned strategy Simple Backtrack Sync will fail to

select this row and insert it into the target table. A new strategy must be designed

in response to the possibility of backlogged data. For this scenario, the attributes of

the data stream would be the following:

1. The data stream has a datetime index.

2. Rows are immutable.

3. New rows usually have later datetime values than existing rows.

4. Backlogged data are inserted within a known interval.

The key characteristic of this scenario is that backlogged rows are inserted into

the source table within a known interval. For example, if rows were added en masse

at the end of a day, then an additional pass of the synchronization strategy may take

place over the day’s interval to “look back” and “capture” any missing rows. To do

this, a new parameter is required for the synchronization procedure, the “end time”

(ET) datetime. The procedure would have the following steps:

29

1. Determine the “start time” (ST) datetime.

Because the synchronization has a known interval, the ST will be the earliest

datetime in the interval.

The ST and RT have the same values.

2. Determine the “end time” (ET) datetime.

The ET will be the latest datetime in the interval.

The ET bounds the synchronization to reduce transferring duplicate rows.

3. Fetch a source and target sample, each with rows greater than or

equal to the ST and less than or equal to the ET .

Omitting ET will unbound the fetch all rows newer than ST , which may be

detrimental to performance if the backlogged interval is significantly older than

the newest target datetime value.

4. Filter out rows of the target sample from the source sample.

5. Insert the filtered sample into the target table.

The pseudocode for this scenario would be the following:

30

procedure synchronize(Source, Target, StartT ime, EndTime)

SourceSample← fetch(Source, StartT ime,EndT ime)

TargetSample← fetch(Target, StartT ime,EndT ime)

FilteredSample← filter(SourceSample, TargetSample)

insert(Target, FilteredSample)

The SQL query to be executed on the source database may have the following struc-

ture:

SELECT *

FROM source

WHERE datetime >= '2021-01-01 00:00:00'::TIMESTAMP
AND datetime <= '2021-01-02 00:00:00'::TIMESTAMP

The following figure illustrates how a target table may be bounded to a known

interval to “catch” missing, backlogged rows. The exact interval depends on the

specific scenario, such as performing daily or weekly passes to verify the integrity of

the “regular” synchronization process.

31

Figure 2.2: A synchronization may be bounded to account for backlogged rows.

32

2.2.2 Multiple IDs with Known Backlogged Data

Extending the previous situation by adding IDs allows for finer tuning when

fetching samples. Suppose a pipe contains many regular append-only IDs, but a single

sensor dumps all of its records into the source table once at the end of a month. Per

the previous scenario (subsection 2.2.1), a verification pass over the interval of the

entire month would successfully fetch the missing rows, but due to the number and

frequency of most of the IDs, many duplicated rows would be fetched and sent over

the network just to catch the single “slow” sensor.

The key takeaway is that the fetch() query may be constrained by the ID.

For example, to address the situation described in the previous paragraph, a fetch

interval could be constructed for the “slow” ID to avoid transferring over redundant

records. A SQL query like the following could be constructed:

SELECT *

FROM source

WHERE id = 1

AND datetime >= '2021-01-01 00:00:00'::TIMESTAMP
AND datetime <= '2021-02-01 00:00:00'::TIMESTAMP

Furthermore, separate intervals may be designated for multiple IDs, meaning

a discontinuous sample may be constructed. This sample may be created by several

methods; multiple simple passes could be executed (one query per ID), sub-queries

could be combined (via the UNION ALL keyword), a single query could augment multiple

queries through logic in the WHERE clause, and a single query could augment multiples

queries by joining on a temporary table of datetimes and IDs.

The approach for executing smaller, distinct queries per ID yields several ad-

vantages:

1. Each individual query is “easy” to execute.

The simple logic of each query allows the source database to optimize searching

across the table’s indices.

33

2. The time between queries may be spent on other operations.

This time allows the potentially sensitive source database to “cool down.”

3. Fetching and filtering may happen in parallel.

While the syncing service is filtering two samples, more samples may be con-

currently fetched.

4. An ongoing synchronization may be paused and resumed.

A verification synchronization may be extended over a long period of time to

disperse the load on the databases.

However, executing multiple queries introduces disadvantages as well:

1. The source table might change between queries.

Because the table is not locked between queries, data may be malformed.

2. This synchronization may take longer to execute.

Although fetching and filtering in parallel will reduce execution time, another

query may lock the source table, halting the ongoing synchronization process.

3. It does not allow the database to fully optimize the request.

Execution engines can reduce processing time when given the full context of the

query.

4. It could overwhelm the databases.

If not throttled appropriately, an onslaught of queries could overload the databases’

active connections.

Below is a simple pseudocode representation of a scheduler for executing queries per

ID. The logic of the getStartT ime() and getEndT ime() functions depends on the

circumstances of the specific data stream. One possible solution may simply return

34

the same values for every ID, or a more specialized implementation could further

constrain the intervals.

procedure synchronize(Source, Target)

for all id ∈ Source do

StartT ime← getStartTime(Source, id)

EndTime← getEndTime(Source, id)

SourceSample← fetch(Source, StartT ime,EndT ime, id)

TargetSample← fetch(Target, StartT ime,EndT ime, id)

FilteredSample← filter(SourceSample, TargetSample)

insert(Target, FilteredSample)

A dedicated scheduler offers more control over how specific portions of the

pipe are synchronized. However, because the synchronization of pipes are themselves

managed by a scheduler in the Meerschaum system, adding an additional layer of

iteration introduces unnecessary complexity into the overall system. Splitting a pipe

into smaller sub-pipes and joining them after the fact would offer many of the same

benefits described above without nesting schedulers.

Three methods for mimicking multiple queries in a single transaction are (1)

appending sub-queries (per subsection 3.1.4), (2) augmenting sub-queries in the WHERE

clause, and performing a LEFT OUTER JOIN on IDs and datetimes (per subsection 3.1.5).

For example, the following SQL query performs the same functionality as the sched-

uler defined above, but rather than filtering and fetching in parallel, it instead locks

the table and returns all of the rows at once.

35

SELECT *

FROM source

WHERE id = 1

AND datetime >= '2021-01-01 00:00:00'::TIMESTAMP
AND datetime <= '2021-01-01 06:00:00'::TIMESTAMP

UNION ALL

SELECT *

FROM source

WHERE id = 2

AND datetime >= '2021-01-01 09:00:00'::TIMESTAMP
AND datetime <= '2021-01-01 18:00:00'::TIMESTAMP

The following SQL query performs the same function but with the logic con-

tained within the WHERE clause. Instead of executing multiple sub-queries and combin-

ing the result at the end, the intervals are defined as a series of statements joined by

OR keywords, allowing the databases’ execution engines to optimize the entire context

of the query.

SELECT *

FROM source

WHERE (

id = 1

AND datetime >= '2021-01-01 00:00:00'::TIMESTAMP
AND datetime <= '2021-01-01 06:00:00'::TIMESTAMP

) OR (

id = 2

AND datetime >= '2021-01-01 09:00:00'::TIMESTAMP
AND datetime <= '2021-01-01 18:00:00'::TIMESTAMP

)

Finally, the following SQL query demonstrates how to achieve the same logic

by joining on a temporary table of datetimes and IDs (similar to the approach taken

in Simple Join Sync in subsection 3.1.5).

36

WITH definition AS (

SELECT *

FROM source

), sync_times AS (

SELECT *

FROM (

VALUES

(1, '2021-01-01 00:00:00'::TIMESTAMP, '2021-01-01 06:00:00'::TIMESTAMP),
(2, '2021-01-01 09:00:00'::TIMESTAMP, '2021-01-01 18:00:00'::TIMESTAMP)

) AS t(id, begin, end)

) SELECT d.*

FROM definition AS d

LEFT OUTER JOIN sync_times AS st

ON st.id = d.id

WHERE (

d.datetime >= st.begin

AND

d.datetime <= st.end

) OR st.id IS NULL

The following figure demonstrates a scenario where two distinct intervals are required.

37

Figure 2.3: A sample may be fetched from discontinuous intervals by querying on
both the ID and datetime indices.

38

2.2.3 Unknown Backlogged Data

A more realistic scenario for backlogged data is a data stream with an unknown

backlog interval. The methods to address “unknown” scenarios present trade-offs

which rely upon the priorities of the end user:

Among run-time, accuracy, and bandwidth, which is most important?

The fast-and-loose strategies presented for the previous scenarios (e.g. Simple

Backtrack Sync) typically perform well in terms of run-time and bandwidth due to

their limited capacity to traverse “into the past” to detect backlogged rows. For cases

such as synchronizing large volumes of utilities data where excluding some rows is not

mission critical, the simple strategies are acceptable. But in scenarios where data are

frequently backlogged or accuracy is a top priority (such as when handling financial

data), then methods to find overlooked records require consideration.

Introducing Iterative Syncs

To accurately synchronize tables where the extent of backlogging is unknown,

the entire interval of the pipe must be synchronized. The most accurate and straight-

forward approach would be to drop the target table and duplicate the source (i.e.

Näıve Sync), but a class of synchronization strategies called Iterative Syncs (sec-

tion 3.2) maximizes accuracy by traversing the datetime axis to detect backlogged

rows. Iterative Syncs depend on the following assumptions:

1. The data stream has a datetime index.

2. Rows are immutable.

3. Rows with later datetime values are higher priority than those with older date-

time values.

39

In section 2.2 when discussing known backlog intervals, a modified version of

Simple Backtrack Sync (subsection 1.3.1) demonstrated how to synchronize a known

interval bounded by start and end times (ST and ET). Without a known interval,

the interval becomes “all time,” and executing an unbounded synchronization would

be less efficient than the baseline näıve method of duplicating the source table.

Not only would performing one large synchronization unnecessarily impose

significant stress on the source database and network, the procedure would lock up

the table, and the fetched rows would not be available in the target until the syn-

chronization had completed. In the context of the assumptions stated above, rows

from only a few days ago would be of greater interest than rows from years ago (if

this were not the case, then an explicit interval could be stated per subsection 2.2.1).

To distribute the server’s load over time and quickly synchronize “priority”

rows, a series of small synchronizations may be executed across the pipe’s entire date-

time interval. The algorithm described below and in Figure 2.2.3 demonstrates how

to iterate across the datetime axis and perform a series of bounded synchronizations

(introduced in subsection 2.2.1) to synchronize unknown backlogged data.

1. Determine the initial, newer “reference time” (RT0) datetime.

If not provided, RT0 will be the newest target datetime value.

2. Determine the next, older “reference time” (RT1) datetime.

If not provided, RT1 will be the oldest target datetime value.

3. Determine the first “backtrack interval” (BTI1).

If not provided, BTI1 will be a default value of 1 hour.

BTI1 has the subscript 1 because the first backtrack interval is used during the

second iteration (where i = 1).

40

4. Synchronize rows newer than RT0.

For the first iteration (i = 0), consider RT0 as the “start time” (ST0) and fetch

rows newer than ST0.

5. While STi > RT1, set values for STi, ETi, and BTIi and synchronize

the intervals.

(a) Grow BTIi according to a growBTI() function.

By default, growBTI() scales BTIi by 40% (BTIi = 1.4(BTIi−1)). The

value used in fetch() is rounded and capped at a maximum value (768

hours or 32 days by default).

(b) Set ETi to the value of the previous “start time” (STi−1).

(c) Set STi to ETi minus BTIi.

If STi is less than RT1, set STi to RT1.

(d) If rows may be counted prior to fetching, skip identical partitions.

If possible, check the the number of rows in the defined interval (e.g. syn-

chronizing via SQL), otherwise simply fetch and filter the interval (e.g.

synchronizing via a simple bounded interface like a web API).

Intervals with the same number of rows may be skipped only if the data are

immutable.

6. Synchronize rows older than RT1.

For the final iteration, consider RT1 as the last ET and fetch rows older than

this ET .

41

function growBTI(BTI, maxBTI)

return min(1.4 ∗BTI, maxBTI)

procedure synchronize(Source, Target, RT0, RT1, BTI1,maxBTI)

if RT0 is None then

RT0 ← getNewestTime(Target)

if RT1 is None then

RT1 ← getOldestTime(Target)

if BTI1 is None then

BTI1 ← 1 hour

if maxBTI is None then

maxBTI ← 768 hours

ST0 ← RT0

SourceSample0 ← fetch(Source, ST0)

TargetSample0 ← fetch(Target, ST0)

FilteredSample0 ← filter(SourceSample0, TargetSample0)

insert(Target, FilteredSample0)

i← 1

while STi < RT1 do

if i 6= 1 then

BTIi ← growBTI(BTIi−1,maxBTI)

ETi ← STi−1

STi ← ETi − round(BTIi)

42

. If the current context allows for remotely counting rows (e.g. executing

SQL statements), check the number of rows and only sync when different

interval counts are returned. /

if getRowCount(Source, STi, ETi) = getRowCount(Target, STi, ETi)

then

i← i+ 1

Continue to the next loop iteration

SourceSamplei ← fetch(Source, STi, ETi)

TargetSamplei ← fetch(Target, STi, ETi)

FilteredSamplei ← filter(SourceSamplei, TargetSamplei)

insert(Target, FilteredSamplei)

i← i+ 1

STfinal ← RTfinal

SourceSamplefinal ← fetch(Source,None, STfinal)

TargetSamplefinal ← fetch(Target,None, STfinal)

FilteredSamplefinal ← filter(SourceSamplefinal, TargetSamplefinal)

insert(Target, FilteredSamplefinal)

43

Figure 2.4: Many small synchronizations can be executed to iteratively detect un-
known backlogged rows.

44

Chapter 3

Strategies

The possibilities for target-based synchronization strategies are potentially

limitless, but to address the scenarios outlined in chapter 2, the strategies may be

grouped into one of three classes: (1) simple syncs, (2) iterative syncs, and (3)

corrective syncs. The intended goals of each algorithm vary depending on the use

case, but in general, the behaviors of these strategies are designed with respect to

processing time, bandwidth, and accuracy. Comparative results against these metrics

are presented in chapter 4.

3.1 Speed-First: Simple Syncs

The Simple Syncs class of synchronization strategies prioritizes run-time and

bandwidth over accuracy due to the shared behavior of focusing on “new” rows in

the future. The strategies within Simple Syncs vary in the metrics of run-time,

bandwidth, and accuracy, but as a whole, they perform best when backlogging is

rare.

45

3.1.1 Simple Sync

Simple Sync is characterized by setting a ST and ET , fetching source and

target samples within the bounds, and inserting the difference. The default behavior

of Simple Sync uses the newest target datetime value as the ST , thereby always

fetching the “newest” rows. This approach “covers” every value on the datetime axis

exactly once. Depending on the probability of backlogging, the algorithm may yield

an accurate result, but for the most part, Simple Sync trades accuracy for run-time

and bandwidth.

3.1.2 Simple Backtrack Sync

Simple Backtrack Sync behaves very similarly to Simple Sync with the key

distinction that the ST is offset by a BTI to widen the bounds for which rows are

fetched. This variation always performs worse in bandwidth than Simple Sync be-

cause the fetch window is always larger. However, especially in situations where rows

are frequently backlogged near the newest target datetime value (subsection 2.2.1),

this backtracking may potentially increase the accuracy over Simple Sync without

significantly sacrificing run-time.

3.1.3 Simple Slow-ID Sync

Simple Slow-ID Sync takes a similar approach to Simple Backtrack Sync except

that the mechanism to determining the ST relies on the ID column of the target table.

The ST is set as the oldest of the newest datetime values per ID, such as the following

example:

46

WITH sync_times AS (

SELECT id, MAX(datetime) AS sync_time

FROM source

GROUP BY id

) SELECT MIN(sync_time)

FROM sync_times

This method for determining the ST effectively results in a dynamic BTI. In scenar-

ios where IDs regularly “lag behind” the newest IDs, Simple Slow-ID Sync may offer

higher accuracy than Simple Backtrack Sync. One serious caveat to Simple Slow-

ID Sync is that once an ID “dies,” the BTI grows larger with time — performance

gradually declines and effectively becomes Näıve Sync.

3.1.4 Simple Append Sync

Simple Append Sync was addressed in subsection 2.2.2 as a way to augment

many small SQL queries in one transaction. The method combines the accuracy

benefits of Simple Slow-ID Sync while circumventing the “dead ID” problem. The

approach consists of performing Simple Sync per ID and appending the queries to-

gether with UNION ALL. As the number of IDs increases, the fetch() query of Simple

Append Sync grows and run-time performance declines.

3.1.5 Simple Join Sync

The end result of Simple Join Sync is the same as Simple Append Sync: per-

forming Simple Sync on a per-ID basis within a single transaction. Rather than

appending together many sub-queries, Simple Join Sync performs a LEFT OUTER JOIN

on a temporary table to determine the ST for each ID. A typical fetch() query for

Simple Join Sync may look like the following:

47

WITH sync_times AS (

SELECT *

FROM (

VALUES

(1, '2021-01-01 00:00:00'::TIMESTAMP),
(2, '2021-01-01 09:00:00'::TIMESTAMP)

) AS t(id, begin)

) SELECT source.*

FROM source

LEFT OUTER JOIN sync_times

ON source.id = sync_times.id

WHERE (

source.datetime > sync_times.begin

OR sync_times.id IS NULL

)

Like Simple Append Sync, Simple Join Sync grows in complexity as the number of IDs

increases. The trade-off for simple ID-focused strategies like Simple Join Sync is to

save bandwidth in exchange for a bit of additional run-time. Depending on the costs

of bandwidth and processing time, this approach would cease to be advantageous

when the number of IDs grows too large.

3.2 No-Compromises Accuracy: Iterative Syncs

The strategies in the Iterative Syncs class take the opposite approach from

Simple Syncs ; guaranteeing an accurate sync comes before run-time and bandwidth.

First introduced in subsection 2.2.3, Iterative Syncs traverse the entire datetime axis

to locate missing rows. This is not unlike the partitioning and hashing strategies

used by Ahluwalia et al. [2010], Choi et al. [2010], and Tang et al. [2010], except

that row-counts are used in place of hashing because the tables are assumed to be

immutable.

Strategies from the Iterative Syncs class will be appealing to users for whom

accuracy is a non-negotiable requirement. Each strategy below may be bounded or

unbounded, meaning that the duration of the iteration may be limited to a maximum

48

interval. In situations where backlogging far “into the past” is unlikely, bounding

the search interval decouples the run-time performance from size of the underlying

tables with the caveat that the synchronization technically does not guarantee perfect

accuracy.

3.2.1 Iterative Simple Sync

Iterative Simple Sync mostly follows the behavior of the example iterative al-

gorithm described in subsection 2.2.3: for each partition of the datetime axis, compare

row-counts and fetch samples when row-counts differ. This approach is specifically

denoted as “simple” because it does not contain any additional mechanisms to tighten

the intervals surrounding missing rows. After accuracy, this method prefers run-time

to bandwidth as it attempts to complete the synchronization in fewer transactions

than the other iterative approaches.

3.2.2 Daily Row-Count Sync

Although included within Iterative Syncs, Daily Row-Count Sync does not it-

erate in the same way as the other iterative strategies. Instead, Daily Row-Count

Sync builds tables of days’ row-counts and performs Simple Sync on days with dif-

fering row-counts (akin to Simple Join Sync). To bound the search, the earliest

datetime value is included in the WHERE clauses. Consider the following example of the

query first executed on the source and target tables to determine which days require

synchronization:

SELECT

DATE_TRUNC('day', datetime) AS days,

COUNT(*) AS rowcount

FROM table

WHERE datetime > '2021-01-01 00:00:00'::TIMESTAMP
GROUP BY days

49

3.2.3 Binary Search Sync

Binary Search Sync combines the approaches of Iterative Simple Sync and

Daily Row-Count Sync for determining which intervals need to be synchronized.

The algorithm traverses the datetime axis like other iterative approaches, calculating

source and target row-counts for each partition. When different row-counts are de-

tected, it recursively performs a binary search, comparing sub-intervals’ row-counts

until a sufficiently small interval is encountered (1 day to be comparable to Daily

Row-Count Sync).

Binary Search Sync executes more transactions than Iterative Simple Sync

and Daily Row-Count Sync, but the end result is that fewer rows are transferred

than Iterative Simple Sync due to identifying specific days, and the databases do not

need to calculate row-counts for every single day like is the case with Daily Row-

Count Sync1. Therefore, Binary Search Sync may offer the same bandwidth savings

as Daily Row-Count Sync without as much overhead in cases where backlogging is

limited.

3.2.4 Iterative CPISync

Iterative CPISync is inspired by TBDS [Ahluwalia et al., 2010] (section 1.2.1),

Partitioned-CPISync [Tang et al., 2010] (section 1.2.2), and P-CPI [Jin et al., 2012]

(section 1.2.2) with the primary distinction that Iterative CPISync takes advantage

of the properties of immutable time-series data.

As discussed in subsection 1.2.2, CPISync performs best when the number of

differences between sets is small (lower m̄ is better). CPISync effectively performs

filter() before fetch(), so bandwidth performance is near-optimal when maintaining

1Because the datetime axis is assumed to be indexed, this difference may be negligible, and the
increased number of transactions would overshadow any potential savings

50

perfect accuracy. However, these bandwidth savings come at the cost of longer run-

times. For example, characteristic polynomials must be evaluated on the source and

target databases, and if the source is a critical production database, then CPISync

may be infeasible. Additionally, the run-time performance of Iterative CPISync de-

grades as backlogging becomes more frequent. When iterating across the datetime

axis (per subsection 2.2.3), the number of differences between the partitions (m̄) cor-

responds to the difference in row-counts, and when the number of missing rows is

high, then a Simple Sync is more practical.

A few considerations need to be kept in mind to address the limitations of

Iterative CPISync:

1. CPISync fundamentally works with integers (technically any rational values

may be used, but working with integers makes calculating over a Galois finite

field significantly easier and more performant). Therefore, rows must be mapped

to integers.

2. CPISync can be computationally demanding if the range of values is large.

Rows could be mapped to integers with something like a hash function, but the

resulting range would be much too large, so instead the datetime value alone is

used to map to an integer.

3. To minimize the range of integers, individual IDs must be synchronized sepa-

rately. A composite integer could be constructed by appending an integer ID to

the Unix timestamp of the datetime value of a row, but caveats such as string

IDs and large IDs complicate this possibility.

4. An acceptable interval size depends on the data set’s temporal resolution. For

data streams with 1-second resolution, a regular Unix timestamp may be used.

51

Increasing the resolution inversely decreases the interval size, so data streams

with nanosecond precision would have intervals 1-billionth the size of a 1-second

stream.

The number of out-of-sync rows in an interval determines m̄ for that iteration

of CPISync. Analogs to m̄ for this algorithm are the frequency of the source data

stream and its temporal resolution. If a data stream has a known, fixed frequency,

then multiples of the frequency may be sequentially numbered — for a resolution of

one record per 15 minutes, the timestamps 00:00, 00:15, 00:30, and 0:45 would be

numbered 1, 2, 3, and 4. In case the resolution is not fixed, the upper bound of the

frequency may be assumed to be the temporal resolution (maximizing the number of

possible rows in an interval). One approach of limiting the assumed frequency is to

determine the minimum interval between rows of an interval in the source database.

This will introduce overhead to determine the intervals’ frequencies but will save

processing time when evaluating m̄ evaluation points Zk.

For example, a data stream with a frequency of one record per 15 minutes

and a 1-second temporal resolution may have a maximum of 96 rows per day. This

would dramatically speed up Iterative CPISync by limiting the range of possible

values. However, limiting timestamps into known intervals is a tight restriction which

would rule out Iterative CPISync from most use-cases, and determining a minimum

resolution may prove more complicated than using a fixed resolution. Therefore,

for this thesis, the implementation of Iterative CPISync uses a 1-second resolution,

and the Unix timestamps of the datetime values are subtracted from the beginning

datetime to limit the range of integers (and the next largest prime above three time

the largest determined value is used to limit calculations to a finite field).

Consider the following example of how a characteristic polynomial for the Z

52

value −1 may be evaluated in SQL (where 1609459200 is the Unix timestamp for

midnight of January 1, 2021 UTC and 494101 is the chosen prime number for the

finite field greater than three-times the number of seconds in the interval).

WITH RECURSIVE t(c) AS (

SELECT (-1 - EXTRACT(EPOCH FROM datetime) - 1609459200)::BIGINT

FROM table

WHERE id = 1

AND datetime >= '2021-01-01 00:00:00'::TIMESTAMP
AND datetime < '2021-01-02 00:00:00'::TIMESTAMP

), r(c, n) AS (

SELECT t.c, row_number() OVER ()

FROM t

), p(c, n) AS (

SELECT c, n

FROM r

WHERE n = 1

UNION ALL

SELECT (r.c * p.c) % 494101, r.n

FROM p

JOIN r ON p.n + 1 = r.n

) SELECT c

FROM p

WHERE n = (

SELECT MAX(n)

FROM p

)

3.3 Best of Both Worlds: Corrective Syncs

The first two classes of strategies were designed to prioritize certain metrics:

Simple Syncs for run-time and bandwidth and Iterative Syncs for accuracy. In situa-

tions where accuracy is valued but some levels of inaccuracy are tolerated, Corrective

Syncs seek to balance run-time, bandwidth, and accuracy. For “everyday” synchro-

nizations, Corrective Syncs perform a lightweight synchronization like Simple Sync

which may accumulate errors, and more expensive iterative synchronizations are per-

formed intermittently (e.g. monthly) to locate missing rows and “correct” the target

table. Because the tables grow continuously, the accuracy rate will trend upwards

over time.

53

3.3.1 Simple Monthly Näıve Sync

Simple Monthly Näıve Sync combines the simplest opposite strategies: Simple

Sync and Näıve Sync. The strategy employs Simple Sync daily and performs a Näıve

Sync each month. This method drastically improves performance over daily Näıve

Sync but is still subject to its scaling issues. In situations where the tables are not too

large and bandwidth is cheap, Simple Monthly Näıve Sync is an easy way to regularly

“flush” the pipes.

3.3.2 Simple Monthly Iterative Simple Sync

Simple Monthly Iterative Simple Sync performs a Simple Sync daily and an

Iterative Simple Sync monthly. The overall approach is that the datetime axis is

always pushed “into the future,” and each point on the axis “in the past” is searched

once per month. This strategy shares behavior with Iterative Simple Sync but dis-

perses it over time. The bounded variant of Simple Monthly Iterative Simple Sync

only backtracks the previous month, and in cases where backlogging more than one

month is unlikely, it is likely to offer adequate run-time performance.

3.3.3 Simple Monthly Daily Row-Count Sync

Like the other corrective strategies, Simple Monthly Daily Row-Count Sync

performs daily Simple Syncs and verifies monthly with an iterative strategy, in this

case Daily Row-Count Sync. The benefit to using Daily Row-Count Sync intermit-

tently is that the backtracking may be bounded and all of the row-counts evaluated

within a single query. The bounded variant may also be easily adjusted without sig-

nificantly altering the iteration behavior (e.g. changing the row-counts interval or

beginning datetime boundary).

54

3.3.4 Simple Monthly Binary Search Sync

As discussed above in subsection 3.2.3, both Binary Search Sync and Daily

Row-Count Sync first locate which days contain missing rows and only differ in the

mechanisms by which these days are determined. Therefore, the comparative per-

formance between Simple Monthly Binary Search Sync and Simple Monthly Daily

Row-Count Sync should be similar to the relationship between Binary Search Sync

and Daily Row-Count Sync with the primary distinction that the iterative approaches

are dispersed monthly.

3.3.5 Simple Monthly Iterative CPISync

Finally, Simple Monthly Iterative CPISync promises attractive bandwidth sav-

ings without detrimental run-time performance by combining the fast and bandwidth-

saving (but potentially inaccurate) Simple Sync with the slow but bandwidth-saving

Iterative CPISync. This strategy may prove to be a practical alternative to Iterative

CPISync in situations where bandwidth comes at a premium and accuracy does not

need to be completely guaranteed at every synchronization.

55

Chapter 4

Experimental Results

To test the performance of the synchronization strategies described in chapter 3,

the Meerschaum plugin syncx was written to simulate the scenarios from chapter 2

[Meares, 2021b].

Performance Metrics

Each simulation increases a source table by one record per ID per hour over the course

of a year, and a target table is synchronized with the source table each day according

to a strategy. Metrics are collected to compare the methods in three areas:

1. Run-time – The duration in seconds of each synchronization.

2. Bandwidth – The number of rows fetched from the source database.

3. Accuracy – The ratio of the number of correctly synchronized rows to the

number of all source rows.

56

Figure Interpretation

The following figures are presented to visualize the strategies’ simulation results.

1. Daily metrics line graphs — The daily line graphs represent the strategies’

daily performances to illustrate their behaviors. For example, the daily metrics

line graphs portray the scaling issues of Näıve Sync and display the intermittent

verification syncs of Corrective Syncs.

2. Summary bar charts — The bar charts compare the aggregated values of the

daily line graphs: the total number of seconds, total number of rows fetched, and

average accuracy rate. This allows for direct comparisons of specific metrics,

i.e. “lower is better” for the total run-time and rows fetched and “higher is

better” for the average accuracy rate.

3. Summary radar charts — The radar charts are structured as intuitive visual

representations of the “skills” of each technique such that “higher is better” for

every metric; the accuracy axis is the same as the bar chart’s, and run-time and

bandwidth are normalized to a scale between the performance of Simple Sync

and fifteen-times worse performance1.

4. Choice Index bar charts — Introduced in section 4.2, the Choice Index is

the weighted average of the normalized values presented in the summary radar

charts. The bar charts offer a 3x3 grid of rankings organized by prioritized

metrics. The rankings allow for consideration of all three metrics when choosing

strategies.

1This scale was chosen to clearly distinguish the “best” and “worst” strategies.

57

Tested Scenarios

Each strategy was tested against four scenarios, although not every combination is

included for brevity. Consult the syncx repository for the complete set of results.

1. single-append-only (subsection 2.1.1)

A single ID reporting hourly with a 0% “outage” probability.

2. multiple-large-n-append-only (subsection 2.1.2)

Many IDs (100) reporting hourly with a 0% “outage” probability.

3. single-known-backlog (subsection 2.2.1)

A single ID reporting hourly with a 10% “outage” probability. Records which

are generated during an “outage” are backlogged within a known interval (24

hours).

4. unknown-backlog (subsection 2.2.3)

An unknown number of IDs (3) reporting at an unknown frequency (hourly)

with an unknown “outage” probability (10%). Backlogged rows are inserted

over an unknown interval (priority queue where a random number of records

are backlogged per iteration).

Technical Context

The following simulations and calculations were executed on a single core of

an Intel i7-4790 running at 3.901GHz with 32 gigabytes of available memory. The

simulations used an in-memory instance of duckdb [Raasveldt and Mühleisen, 2020],

on which rows consisting of a timestamp, integer, and float (as described in subsec-

tion 2.1.1) were regularly inserted into the source tables.

58

4.1 Comparing Classes of Strategies

This section compares the relative performances of strategies within each class

(Simple, Iterative, and Corrective Syncs) to identify nuances in performances. Com-

parisons made across these boundaries for the purposes of metric optimizations are

presented in section 4.2.

4.1.1 Establishing a Baseline: Simple Sync vs. Näıve Sync

The strategies Simple Sync and Näıve Sync are contrasted to provide context

for the later combinations. As expected, Näıve Sync exhibits abysmal performance in

run-time and bandwidth, with a perfect accuracy rate as its only redeeming quality.

Because Näıve Sync includes every previously fetched record for each synchro-

nization, run-time and bandwidth complexity scales linearly (O(n)), thereby squaring

the cumulative rows fetched (O(n2)). Similar performances to those exhibited in Fig-

ure 4.1 were observed across all of the scenarios tested.

Inclusion of datetime boundaries ST and ET decouples Simple Sync from the

underlying tables such that it exhibits constant complexity (O(1)) and reduces the

cumulative row-count to its optimal linear reality (O(n)). Of course additional unac-

counted latency may increase the daily run-time as n grows large (i.e. data gravity),

but partitioning schemes like TimescaleDB’s hyper tables may serve to mitigate any

additional latency.

59

Figure 4.1: The daily performances of Simple Sync and Näıve Sync for the scenario
unknown-backlog
“Lower is better” for run-time and bandwidth, and “higher is better” for accuracy.

60

Figure 4.2: Simple Sync requires significantly less bandwidth than Näıve Sync.
“Lower is better” for run-time and bandwidth, and “higher is better” for accuracy.

61

Figure 4.3: Simple Sync outperforms Näıve Sync in run-time and bandwidth but not
accuracy.
“Higher is better” for all metrics.

62

4.1.2 Comparing Simple Syncs

Simple Sync is utilized as a benchmark strategy due to its straightforward

design and admirable performance. As described in section 3.1, variations of the

Simple Sync approach are designed to improve its accuracy and bandwidth without

significantly sacrificing its run-time. Due to their common roots, the performances of

the Simple Syncs are mostly comparable with a few noteworthy observations.

Best in Bandwidth: Simple Join Sync and Simple Append Sync

First, the ID-focused variants (Simple Append Sync and Simple Join Sync)

slightly improve bandwidth at the expense of run-time (see Figure 4.4). The run-

time degradation is most significant with a large number of IDs — when syncing 100

IDs, the daily synchronizations takes approximately 400% longer than Simple Sync

in exchange for a 4% reduction on bandwidth (2475 versus 2376 rows per day). In

situations with many IDs reporting frequently, the potential bandwidth savings are

significant. Accuracy is not affected because no amount of backtracking takes place.

63

Figure 4.4: The ID-focused Simple Syncs slightly reduce the bandwidth of Simple
Sync but suffer significantly as the number of IDs scales.
“Lower is better” for run-time and bandwidth, and “higher is better” for accuracy.

64

Best in Accuracy: Simple Backtrack Sync

Second, the BTI-focused variants (Simple Backtrack Sync and Simple Slow-

ID Sync) exhibit expected behavior of diminished run-time and bandwidth in ex-

change for improvements in accuracy. However, the improved accuracy is negligible

or greatly diminished in situations like unknown-backlog, but in the situation single-

known-backlog where backlogged records (10% of all rows) are inserted within 24

hours, the strategy Simple Backtrack Sync inversely trades bandwidth for accuracy

with no noticeable effect on run-time.

For example, Simple Backtrack Sync with a BTI of 1 hour demonstrates a

0.35% accuracy improvement at approximately a 4% increase in bandwidth. This

intuitively makes sense because the 1-hour BTI only “catches” 1
24

of the backlogged

records, so 4% of the 10% backlogged records is an improved accuracy of 0.4%. When

the BTI is increased to 24 hours, accuracy improves to nearly 100% at a bandwidth

cost of 200% (slight discrepancies may be due to programming oversights; see Fig-

ure 4.5). Therefore, the daily run-time complexity remains constant (O(1)), the daily

fetched row volume scales as a function of the BTI size (O(m)), and the cumulative

fetched row volume scales linearly with an increased slope according to the BTI size

(O(mn)).

65

Figure 4.5: When backlogged rows are quickly inserted, Simple Backtrack Sync picks
up considerable accuracy at the cost of bandwidth but not run-time.
“Lower is better” for run-time and bandwidth, and “higher is better” for accuracy.

Figure 4.6: When bandwidth is cheap and rows are frequently backlogged within a
known interval, Simple Backtrack Sync is an attractive option.
“Lower is better” for run-time and bandwidth, and “higher is better” for accuracy.

66

Figure 4.7: Apart from slight variations, Simple Syncs behave comparably when the
number of IDs is small.
“Higher is better” for all metrics.

67

4.1.3 Comparing Iterative Syncs

The Iterative Syncs all share the design goal of maintaining perfect accuracy.

As noted by Byers et al. [2002], exact synchronizations require significantly more

effort than approximate solutions, so every strategy under-performs Simple Sync.

However, the different designs of these strategies result in further choices which vary

in performance.

Best in Bandwidth: Iterative CPISync

Consider the stark performance difference of Iterative CPISync (Figure 4.8 and

Figure 4.9). Just like its signature appeal, CPISync achieves an exact synchronization

with optimal communication complexity — that is, the additional bandwidth atop

Simple Sync is used to fetch only the missing rows. This is possible because CPISync

executes filter() prior to fetching backlogged records. However, due to the high

execution cost, Iterative CPISync should ideally only be employed when the source

database can handle the increased load.

Best in Run-time: Daily Row-Count Sync

Like Simple Backtrack Sync, Daily Row-Count Sync trades bandwidth for ac-

curacy without seriously compromising run-time. To perform an exact synchroniza-

tion, more run-time is required than Simple Backtrack Sync, though the same principle

is at play: Daily Row-Count casts a wide net — but not too wide to the point of

degrading run-time. At the cost of 300% of the bandwidth required of Simple Sync, it

only requires 280% of the run-time (260% when bounded) to achieve perfect accuracy,

significantly less time than the 3,000% that comes with CPISync.

68

Balancing Run-Time and Bandwidth: Iterative Simple Sync and

Binary Search Sync

Iterative Simple Sync and Binary Search Sync perform comparably with Bi-

nary Search Sync slightly preferring bandwidth over run-time (Binary Search Sync

saves approximately 2% bandwidth over Iterative Simple Sync at a roughly 10% in-

crease in run-time). Both strategies occupy the middle ground between Iterative

CPISync and Daily Row-Count Sync and offer acceptable run-time and bandwidth

while maintaining exact synchronization. For example, Iterative Simple Sync requires

240% of the bandwidth and 980% of the run-time of Simple Sync (compared to 110%

and 3,000% for Iterative CPISync and 300% and 280% for Daily Row-Count Sync)

Figure 4.8: The run-times of Iterative Syncs scale with the underlying tables in the
name of maintaining guaranteed accuracy.
“Lower is better” for run-time and bandwidth, and “higher is better” for accuracy.

69

Figure 4.9: The trade-offs made by Iterative Syncs in order to maintain guaranteed
perfect accuracy become clear when contrasting the summary metrics.
“Lower is better” for run-time and bandwidth, and “higher is better” for accuracy.

70

Figure 4.10: Iterative Syncs maximize accuracy at the expense of run-time and band-
width.
“Higher is better” for all metrics.

71

Figure 4.11: Bounded Iterative Syncs only vary from unbounded versions in that
run-time remains mostly constant rather than scaling with the size of the tables.
“Lower is better” for run-time and bandwidth, and “higher is better” for accuracy.

72

4.1.4 Comparing Corrective Syncs

Although not perfect synchronizations, the amortized accuracy rate of Correc-

tive Syncs asymptotically approaches 100%. In practice, the average accuracy rate is

slightly depressed because on most days, at least several rows are missing from the

target table. The number of outstanding rows is restricted to the most recent month,

so as the table grows, the accuracy rate rises.

Bandwidth-First: Simple Monthly Iterative CPISync

Executing iterative synchronizations once per month dramatically reduces the

expensive processing requirement of Iterative CPISync while still achieving a high ac-

curacy rate and near-optimal bandwidth performance. With an average accuracy rate

of 98%, Simple Monthly Iterative CPISync reduces the total run-time from 3,000% of

Simple Sync to just 690% (670% when bounded).

The Perfect Balance: Simple Monthly Daily Row-Count Sync and Simple

Monthly Iterative Simple Sync

Simple Monthly Daily Row-Count Sync is a “jack of all trades; master of none”

as far as immutable time-series synchronization strategies go. In the tested scenario,

it improves the average accuracy rate from 91% to 98% and spreads the cost between

run-time and bandwidth; its total run-time performance is 170% of Simple Sync and

bandwidth is 200%, meaning that it fails to optimize for any particular metrics but

achieves a sustainable balance between the three.

It’s worth noting that the bounded variant of Simple Monthly Iterative Simple

Sync actually outperforms bounded Simple Monthly Daily Row-Count Sync by 13%

in run-time and 1% in bandwidth (see Figure 4.14), but the same does not hold true

73

for the pure iterative versions. Because Iterative Simple Sync checks the row-counts of

each partition in separate transactions, the repetitive counting results in significantly

wasted run-time. Bounding the iteration caps the number of transactions and reduces

the wasted effort previously spent on counting. Therefore, Simple Monthly Iterative

Simple Sync is preferable when choosing a bounded corrective strategy.

Figure 4.12: The Corrective Syncs are characterized by monthly, expensive verifica-
tion syncs.
“Lower is better” for run-time and bandwidth, and “higher is better” for accuracy.

74

Figure 4.13: Simple Monthly Daily Row-Count Sync is the most balanced unbounded
corrective strategy.
“Lower is better” for run-time and bandwidth, and “higher is better” for accuracy.

Figure 4.14: Simple Monthly Iterative Simple Sync outperforms Simple Monthly Daily
Row-Count Sync when the iterations are bounded.
“Lower is better” for run-time and bandwidth, and “higher is better” for accuracy.

75

Figure 4.15: Corrective Syncs provide flexibility for improving run-time or bandwidth
without significantly sacrificing accuracy.
“Higher is better” for all metrics.

76

4.2 Ranking Strategies

After examining the performances of strategies within their classes, it follows

that a mechanism for directly ranking strategies is worth consideration. Although the

summary bar chart Figure 4.16 below offers a sense of the advantages of each choice,

it lacks an intuitive way to directly rank them according to the readers’ priorities.

For example, if the reader is most concerned with a balance of run-time and accuracy,

how can we provide a list of suggested strategies?

Figure 4.16: The summary bar chart visualizes the advantages of strategies but does
not allow for direct rankings beyond single metrics.
“Lower is better” for run-time and bandwidth, and “higher is better” for accuracy.

The Choice Index

One solution is to calculate a weighted average of the normalized performance

scores presented as “skills” in the summary radar charts. This “score” (referred to

as the Choice Index) allows us to craft a ranked list of suggestions according to the

user’s priorities.

77

4.2.1 One Metric

Like the summary bar charts, Figure 4.17 below ranks the preferred strategies

by applying a 100% weight to a single metric. This weight distribution clearly makes

direct comparisons for specific metrics.

Analysis

In this case, Simple Sync is the fastest, Simple Join Sync is the most bandwidth-

efficient, and the iterative strategies Daily Row-Count Sync and Iterative CPISync

maintain perfect accuracy. The trade-offs made to achieve “best in class” are visi-

ble, but to recognize the value of “middle-of-the-road” strategies like Simple Monthly

Iterative Simple, multiple metrics need to be considered.

Figure 4.17: Preferred strategies ranked by a single metric.
“Higher is better” for all metrics.

4.2.2 Two Metrics

Extending the Choice Index to two priorities involves distributing the weights

for each combination of metrics. The resulting rankings are arranged into a 3x3

grid where the column corresponds to the first priority (weighted at 66.67%) and the

78

row to the second metric (weighted at 33.33%). This layout includes the rankings of

Figure 4.17 in its diagonal and allows for additional discretion when choosing preferred

metrics.

Figure 4.18: Preferred strategies ranked by two metrics.
“Higher is better” for all metrics.

Analysis

Simple Sync typically prevails when run-time or bandwidth is weighted high-

est, but the added dimension emphasizes Simple Monthly Iterative Simple Sync with

accuracy as a second priority. Similarly, when ranking bandwidth and accuracy, It-

erative CPISync is able to rise to the top because its detrimental run-time is not

considered. Ranking for accuracy results in the most diversity in choice because it

allows the unique qualities of the strategies to shine through.

79

4.2.3 Three Metrics

The rankings in Figure 4.19 consider all three metrics; the first metric is

weighted at 57.14%, the second at 28.57%, and the third at 14.29%2. Comparing

strategies in this way gives us the ability to determine more balanced strategies while

allowing for emphasis on our preferred metrics.

Figure 4.19: Preferred strategies ranked by three metrics.
“Higher is better” for all metrics.

Analysis

When preferentially weighing run-time and bandwidth, Simple Sync always

comes out on top. Despite exhibiting the worst accuracy of all the methods, its

lightweight design more than makes up for what it lacks in accuracy. It may be

tempting to always choose Simple Sync, but keep in mind its sensitivity to external

conditions — its accuracy rate is entirely dependent on the prevalence of outages. For

2The weights were chosen as multiples of 1
7 such that each subsequent priority has half the weight

of the last.

80

simple analytical purposes where the stream of data always increases and aggregations

are frequently performed (e.g. averaging weather data), the “good enough” accuracy

of Simple Sync is worth the efficient synchronization.

When perfect accuracy is an absolute requirement, then the pool of choices is

reduced to the Iterative Syncs (see subsection 4.1.3). Otherwise, a strategy from the

Corrective Syncs is likely the best option. One of the most well-rounded strategies

is the bounded variant of Simple Monthly Iterative Simple Sync, which tremendously

increases the accuracy of Simple Sync while maintaining acceptable run-time and

bandwidth.

81

Chapter 5

Conclusion

5.1 Choosing a Strategy

The sections below summarize the findings from chapter 4 to aid the reader in

choosing a strategy. Keep in mind not every situation will neatly fit into the described

scenarios and that the following suggestions are to an extent subjective; please refer

to chapter 4 for more comprehensive comparisons.

5.1.1 Identify the Scenario

The first step to choosing a synchronization strategy is identifying which features of

the following scenarios best describe your situation.

1. single-append-only — Backlogging in the source table is not a concern, and a

single ID makes up the data stream.

2. multiple-large-n-append-only — Backlogging is not a concern, and many IDs

make up the data stream.

82

3. single-known-backlog — Records are backlogged into the source table within a

known interval.

4. unknown-backlog — Records are backlogged into the source table at random.

An unknown number of IDs (3) makes up the data stream.

Append-Only

As mentioned in subsection 2.1.1, the ideal strategy for a single-ID, append-

only data stream is Simple Sync. The other strategies intend to mitigate backlogging

or reduce bandwidth, but single-append-only already is the ideal scenario which re-

quires no additional measures to accommodate backlogging.

The scenario multiple-large-n-append-only adds another dimension which may

be used to alter the behavior of Simple Sync. When the number of IDs are large and

the frequency of records is high, the ID-focused strategies offer the best bandwidth

savings at a steep increase in run-time. Therefore, when optimizing for bandwidth,

the strategy Simple Join Sync is the best choice if run-time is not a concern, otherwise

Simple Sync remains an appropriate choice for append-only situations.

Known Backlog

For situations with regular “outages” which are resolved quickly (e.g. within

24 hours), the strategy Simple Backtrack Sync offers an excellent balance between

run-time, bandwidth, and accuracy. Although the number of rows fetched may be a

multiple of Simple Sync, when compared to Näıve Sync, its bandwidth performance

is still acceptable.

83

Unknown Backlog

The scenario unknown-backlog offers the most choices. To choose a strategy

which suits your needs, you first need to prioritize the metrics. Similar to the Choice

Index rankings from section 4.2, we offer the strategy recommendation chart below to

guide the reader when choosing a strategy. Select the column of the highest priority

metric, then choose the row corresponding to the second priority.

First Priority
Run-time Bandwidth Accuracy

Run-time Simple Simple Daily Row-Count
Second
Priority

Bandwidth Simple Simple Join Iterative CPISync

Accuracy
Simple Monthly
Iterative Simple
(bounded)

Iterative CPISync Daily Row-Count

Table 5.1: Strategy recommendation chart for situations similar to unknown-backlog

Practical Example:

Clemson Energy Visualization and Analytics Center

A real-world example of choosing an appropriate strategy is the initial design

process of the Clemson Energy Visualization and Analytics Center (CEVAC). CE-

VAC was faced with the situation described in subsection 1.1.1 where utilities data

tables resided on sensitive production databases. The first solution resembled Simple

Sync, but due to regular backlogging in the source databases, a version of Simple

Backtrack Sync was devised. CEVAC was tasked with frequently extracting many

sub-streams (often with many IDs) from the source databases over a high-bandwidth

link, so run-time was the chief priority. Because the situation mostly consisted of

known backlogging intervals, Simple Backtrack Sync (with variable BTIs) best fit

the situation and desired priorities.

84

5.2 Future Work

The findings in this thesis demonstrate the surprising variability amongst

target-based approaches to the immutable time-series synchronization problem. Given

the tremendous real-world applications of synchronization strategies and the growing

importance of the Internet of Things, future work may reveal cost-saving solutions.

Below are points of interest which may warrant further research.

5.2.1 Additional Strategies

Fetch Strategies

The fetch() strategies outlined in this thesis fell into the classes Simple Syncs,

Iterative Syncs, and Corrective Syncs. This framework is useful for organization but

does not at all represent the sphere of possible designs. For example, a class may

be constructed on whether strategies rely on prior context. Other strategies may be

written depending on the network layout; this thesis assumes a source database, target

database, and intermediate syncing service, but other combinations such as cluster

configurations may result in intricate strategies as opposed to the straightforward

methods outlined in chapter 3.

Filter Strategies

The stages fetch(), filter(), and insert() were introduced in subsection 1.3.1,

but chapter 3 only discusses fetch strategies. Filtering mechanisms implemented

in SQL and pandas are mentioned in subsection 1.3.3, but other possibilities may

enhance performance. After all, filter() is a smaller, localized version of the larger

set reconciliation problem. In this context, algorithms introduced in section 1.2 like

Bloom Filters may be applied.

85

Insert Strategies

The opportunity for optimization of the insert() stage in production is men-

tioned in subsection 1.3.4, such as the Meerschaum implementation which takes ad-

vantage of PostgreSQL’s bulk insertion features. Strategies at this stage of the syn-

chronization process may also experiment with chunking: does a dynamic chunk size

outperform a static size, and if so, how should the chunk size be determined? Factors

which were overlooked — such as the network link, filtered sample size, and insertion

protocol — may lead to opportunities to further optimize the overall synchronization

procedure.

Further Optimizations

Opportunities for optimization exist outside the synchronize() stages. For ex-

ample, multi-stage pipes which derive from existing pipes or pipes which join multiple

data sources consist of multiple instances of synchronize(). The manners in which

these complicated data sets are constructed influence the performance of the overall

synchronization.

5.2.2 Time-Series Properties

Mutability

One key property of this thesis is the assumption that rows remain immutable.

This is often the case for the fundamental data streams, but any amount of aggre-

gation requires immutability. Solutions like EventDB get around this by storing

changes as immutable “events” so that the tables may be quickly “rolled back” to

earlier states [Zhao et al., 2019]. This design has its advantages but storing each

change as a distinct “event” requires more space than may be necessary. Therefore,

86

if sufficient interest exists, then follow-up studies may investigate modified strategies

which account for varying degrees of mutability.

Frequency, Timescale, and Resolution

The strategies in this thesis primarily rely on the datetime axis alone in order

to retain flexibility for all frequencies and timescales. However, strategies may be

designed with specific frequencies, timescales, and resolutions in mind. For example,

the run-time performance of Iterative CPISync may be improved when the frequency

and resolution are known (subsection 3.2.4).

5.2.3 Experiment Design

Evaluation Metrics

The results in chapter 4 are presented to most clearly illustrate the effects of

the strategies on straightforward metrics. The three metrics — run-time, bandwidth,

and accuracy — by no means encompass every metric by which strategies may be

compared but rather serve to avoid complicated analyses by only showing what a

user would most likely care to see (e.g. the weighted Choice Index rankings would be

difficult to read with more than three metrics). A future study may include additional

metrics when determining the Choice Index.

Scenario Simulations

The simulated scenarios are intended to simplify the data streams to their

characteristics found in real-world data streams rather than mirror the many combina-

tions found in real-world scenarios. This design choice highlights strengths and weak-

nesses of the algorithms but may obscure qualities of real-world situations. Therefore,

87

follow-up papers may conduct field studies and identify unforeseen shortcomings of

the strategies.

5.3 Summary

In the context of immutable time-series data streams, we demonstrate several

novel synchronization strategies. In addition to performance analyses, we recommend

algorithms depending on scenarios’ characteristics and the reader’s priorities. In

general, the following strategies are declared as the “winners”:

1. Simple Sync for minimal run-time and bandwidth (with decent accuracy).

2. Daily Row-Count Sync for minimizing run-time and bandwidth while maintain-

ing perfect accuracy.

3. The bounded variant of Simple Monthly Iterative Simple Sync for balancing all

three metrics.

88

Bibliography

Madhu Ahluwalia, Ruchika Gupta, Aryya Gangopadhyay, Yelena Yesha, and Michael
McAllister. Target-Based Database Synchronization. In Proceedings of the 2010
ACM Symposium on Applied Computing, SAC ’10, page 1643–1647, New York,
NY, USA, 2010. Association for Computing Machinery. ISBN 9781605586397. doi:
10.1145/1774088.1774443. URL https://doi.org/10.1145/1774088.1774443.

Michael A. Bender, Martin Farach-Colton, Rob Johnson, Russell Kraner, Bradley C.
Kuszmaul, Dzejla Medjedovic, Pablo Montes, Pradeep Shetty, Richard P. Spillane,
and Erez Zadok. Don’t Thrash: How to Cache Your Hash on Flash, 2012.

Burton H. Bloom. Space/Time Trade-Offs in Hash Coding with Allowable Errors.
Commun. ACM, 13(7):422–426, July 1970. ISSN 0001-0782. doi: 10.1145/362686.
362692. URL https://doi.org/10.1145/362686.362692.

Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh, and George
Varghese. An Improved Construction for Counting Bloom Filters. In 14th Annual
European Symposium on Algorithms, LNCS 4168, pages 684–695, 2006.

Pranav Byali, Md Zaid S Bevinahalli, and Vaishnavi Chavan. Bloom Filter: A Data
Structure for Quick Searching. International Journal of Engineering Research &
Technology, 8(15):204–206, 2020.

John Byers, Jeffrey Considine, and Michael Mitzenmacher. Fast Approximate Rec-
onciliation of Set Differences. In BU Computer Science TR, pages 2002–19, 2002.

Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and Ayellet Tal. The Bloomier Filter:
An Efficient Data Structure for Static Support Lookup Tables. In Proceedings of the
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’04), volume 15,
pages 30–39, 01 2004. doi: 10.1145/982792.982797.

Mi Young Choi, Eun Ae Cho, Dae Ha Park, Chang Joo Moon, and Doo Kwon Baik.
A database synchronization algorithm for mobile devices. IEEE Transactions on
Consumer Electronics, 56(2):392–398, May 2010. ISSN 0098-3063. doi: 10.1109/
TCE.2010.5505945.

89

https://doi.org/10.1145/1774088.1774443
https://doi.org/10.1145/362686.362692

David Eppstein and Michael T Goodrich. Straggler identification in round-trip data
streams via Newton’s identities and invertible Bloom filters. IEEE Transactions
on Knowledge and Data Engineering, 23(2):297–306, 2010.

David Eppstein, Michael T. Goodrich, Frank Uyeda, and George Varghese. What’s
the Difference? Efficient Set Reconciliation without Prior Context. In Proceedings
of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11, page 218–229, New York,
NY, USA, 2011. Association for Computing Machinery. ISBN 9781450307970. doi:
10.1145/2018436.2018462. URL https://doi.org/10.1145/2018436.2018462.

Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher.
Cuckoo Filter: Practically Better Than Bloom. In Proceedings of the 10th ACM
International on Conference on Emerging Networking Experiments and Technolo-
gies, CoNEXT ’14, page 75–88, New York, NY, USA, 2014. Association for Com-
puting Machinery. ISBN 9781450332798. doi: 10.1145/2674005.2674994. URL
https://doi.org/10.1145/2674005.2674994.

Li Fan, Pei Cao, J. Almeida, and A.Z. Broder. Summary Cache: A Scalable Wide-
Area Web Cache Sharing Protocol. IEEE/ACM Transactions on Networking, 8(3):
281–293, 2000. doi: 10.1109/90.851975.

Michael T. Goodrich and Michael Mitzenmacher. Invertible Bloom Lookup Tables,
2011.

Thomas Mueller Graf and Daniel Lemire. Xor filters: Faster and smaller than bloom
and cuckoo filters. ACM J. Exp. Algorithmics, 25, March 2020. ISSN 1084-6654.
doi: 10.1145/3376122. URL https://doi.org/10.1145/3376122.

Thomas Greiner and Anton Donner. Data Management in Mass Casualty Incidents:
The e-Triage Project. In Workshop zur IT-Unterstützung von Rettungskräften im
Rahmen der GI-Jahrestagung, pages 192–198, Sep 2010. URL https://subs.emis.

de/LNI/Proceedings/Proceedings176/192.pdf.

Søren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. Time Series
Management Systems: A Survey. IEEE Transactions on Knowledge and Data
Engineering, 29(11):2581–2600, 2017. doi: 10.1109/TKDE.2017.2740932.

Jiaxi Jin, Wei Si, David Starobinski, and Ari Trachtenberg. Prioritized Data Syn-
chronization for Disruption Tolerant Networks. In IEEE Military Communica-
tions Conference MILCOM, pages 1–8, 10 2012. ISBN 978-1-4673-1729-0. doi:
10.1109/MILCOM.2012.6415678.

Donald Knuth. The Art of Computer Programming: Sorting and Searching, volume 3.
Addison-Wesley, 1973.

90

https://doi.org/10.1145/2018436.2018462
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1145/3376122
https://subs.emis.de/LNI/Proceedings/Proceedings176/192.pdf
https://subs.emis.de/LNI/Proceedings/Proceedings176/192.pdf

Sanja Lazarova-Molnar and Nader Mohamed. Collaborative Data Analytics for Smart
Buildings: Opportunities and Models. Cluster Computing, 22(1):1065–1077, Jan
2019. ISSN 1573-7543. doi: 10.1007/s10586-017-1362-x. URL https://doi.org/

10.1007/s10586-017-1362-x.

Bennett Meares. Meerschaum. https://github.com/bmeares/Meerschaum, 2021a.

Bennett Meares. syncx. https://github.com/bmeares/syncx, 2021b.

Ralph C Merkle. Protocols for Public Key Cryptosystems. In 1980 IEEE Symposium
on Security and Privacy, pages 122–122. IEEE, 1980.

Yaron Minsky and Ari Trachtenberg. Set Reconciliation with Nearly Optimal Com-
munication Complexity. In In International Symposium on Information Theory,
pages 2213 – 2218. IEEE, 2001.

Michael Mitzenmacher, Salvatore Pontarelli, and Pedro Reviriego. Adaptive Cuckoo
Filters. ACM J. Exp. Algorithmics, 25, March 2020. ISSN 1084-6654. doi: 10.
1145/3339504. URL https://doi.org/10.1145/3339504.

Muhammad Muhammad, Stefan Erl, and Matteo Berioli. Efficient Synchronization of
Multiple Databases over Broadcast Networks. In Riadh Dhaou, André-Luc Beylot,
Marie-José Montpetit, Daniel Lucani, and Lorenzo Mucchi, editors, Personal Satel-
lite Services, pages 77–89, Cham, 2013. Springer International Publishing. ISBN
978-3-319-02762-3. doi: 10.1007/978-3-319-02762-3 7.

Onica. Accelerating Fraud Detection and Enabling Real-Time Dynamic Data
Querying through an Efficient Data Pipeline, 2020. URL https://onica.com/

case-study/m1-finance/.

Anna Pagh, Rasmus Pagh, and S. Srinivasa Rao. An Optimal Bloom Filter Replace-
ment. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’05, page 823–829, USA, 2005. Society for Industrial and Ap-
plied Mathematics. ISBN 0898715857.

Rasmus Pagh and Flemming Friche Rodler. Cuckoo Hashing. Journal of Algorithms,
51(2):122–144, 2004.

Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. Gorilla: A Fast, Scalable, in-Memory Time
Series Database. Proc. VLDB Endow., 8(12):1816–1827, August 2015. ISSN
2150-8097. doi: 10.14778/2824032.2824078. URL https://doi.org/10.14778/

2824032.2824078.

Sinh Pham. Key-Value Storage System Synchronization in Peer-to-Peer Environ-
ments. Master’s thesis, University of Saskatchewan, 2014.

91

https://doi.org/10.1007/s10586-017-1362-x
https://doi.org/10.1007/s10586-017-1362-x
https://github.com/bmeares/Meerschaum
https://github.com/bmeares/syncx
https://doi.org/10.1145/3339504
https://onica.com/case-study/m1-finance/
https://onica.com/case-study/m1-finance/
https://doi.org/10.14778/2824032.2824078
https://doi.org/10.14778/2824032.2824078

Felix Putze, Peter Sanders, and Johannes Singler. Cache-, Hash-, and Space-Efficient
Bloom Filters. ACM J. Exp. Algorithmics, 14, January 2010. ISSN 1084-6654. doi:
10.1145/1498698.1594230. URL https://doi.org/10.1145/1498698.1594230.

Mark Raasveldt and H. Mühleisen. Data Management for Data Science - Towards
Embedded Analytics. In CIDR, 2020.

Sean Rhea, Eric Wang, Edmund Wong, Ethan Atkins, and Nat Storer. LittleTable: A
Time-Series Database and Its Uses. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD ’17, page 125–138, New York, NY,
USA, 2017. Association for Computing Machinery. ISBN 9781450341974. doi:
10.1145/3035918.3056102. URL https://doi.org/10.1145/3035918.3056102.

Chen Tang, Anton Donner, Javier Mulero Chaves, and Muhammad Muhammad.
Performance of Database Synchronization Algorithms via Satellite. In 2010 5th
Advanced Satellite Multimedia Systems Conference and the 11th Signal Process-
ing for Space Communications Workshop, pages 455–461, 2010. doi: 10.1109/
ASMS-SPSC.2010.5586921.

Daniel Ting and Rick Cole. Conditional Cuckoo Filters, page 1838–1850. Association
for Computing Machinery, New York, NY, USA, 2021. ISBN 9781450383431. URL
https://doi.org/10.1145/3448016.3452811.

Ari Trachtenberg, David Starobinski, and Sachin Agarwal. Fast PDA Synchronization
Using Characteristic Polynomial Interpolation. In IEEE INFOCOM, pages 1–10,
2002.

Andrew Tridgell and Paul Mackerras. The rsync Algorithm. Technical report,
Australian National University, 1996. URL https://www.cs.cmu.edu/~15-749/

READINGS/required/cas/tridgell96.pdf.

Shyam Vyas. Joint Polar Satellite System (JPSS) Ground System Concept of Oper-
ations. Technical report, National Oceanic and Atmospheric Administration and
National Aeronautics and Space Administration, 2019. URL https://www.jpss.

noaa.gov/assets/pdfs/474-00054_JPSS-GS-ConOps_E%20(5).pdf.

Chen Wang, Xiangdong Huang, Jialin Qiao, Tian Jiang, Lei Rui, Jinrui Zhang, Rong
Kang, Julian Feinauer, Kevin A. McGrail, Peng Wang, Diaohan Luo, Jun Yuan,
Jianmin Wang, and Jiaguang Sun. Apache IoTDB: Time-Series Database for In-
ternet of Things. Proc. VLDB Endow., 13(12):2901–2904, August 2020. ISSN
2150-8097. doi: 10.14778/3415478.3415504. URL https://doi.org/10.14778/

3415478.3415504.

Yang Yang, Qiang Cao, and Hong Jiang. EdgeDB: An Efficient Time-Series Database
for Edge Computing. IEEE Access, 7:142295–142307, 2019. doi: 10.1109/ACCESS.
2019.2943876.

92

https://doi.org/10.1145/1498698.1594230
https://doi.org/10.1145/3035918.3056102
https://doi.org/10.1145/3448016.3452811
https://www.cs.cmu.edu/~15-749/READINGS/required/cas/tridgell96.pdf
https://www.cs.cmu.edu/~15-749/READINGS/required/cas/tridgell96.pdf
https://www.jpss.noaa.gov/assets/pdfs/474-00054_JPSS-GS-ConOps_E%20(5).pdf
https://www.jpss.noaa.gov/assets/pdfs/474-00054_JPSS-GS-ConOps_E%20(5).pdf
https://doi.org/10.14778/3415478.3415504
https://doi.org/10.14778/3415478.3415504

Wenjia Zhao, Yong Qi, Di Hou, Peijian Wang, Xin Gao, Zirong Du, Yudong Zhang,
and Yongfang Zong. EventDB: A Large-Scale Semi-structured Scientific Data Man-
agement System. In Jianhui Li, Xiaofeng Meng, Ying Zhang, Wenjuan Cui, and
Zhihui Du, editors, Big Scientific Data Management, pages 105–115, Cham, 2019.
Springer International Publishing. ISBN 978-3-030-28061-1.

93

	Title Page
	Abstract
	Acknowledgments
	List of Figures
	Nomenclature
	Introduction
	Synchronization in Practice
	Related Works
	Overview of the Algorithm

	Scenarios
	Append-Only Data Streams
	Backlogged Data

	Strategies
	Speed-First: Simple Syncs
	No-Compromises Accuracy: Iterative Syncs
	Best of Both Worlds: Corrective Syncs

	Experimental Results
	Comparing Classes of Strategies
	Ranking Strategies

	Conclusion
	Choosing a Strategy
	Future Work
	Summary

	Bibliography

