
Practical Target-Based Synchronization Strategies for
Immutable Time-Series Data Tables

A Thesis Defense Presentation by Bennett Meares
8 October 2021

1. Practical
a. Intended for real-world use

b. Situation-dependent

2. Target-Based
a. Limited context of the source database

b. Typical of client-server model when using third party APIs

3. Synchronization Strategies
a. Database reconciliation algorithms

b. Used for identifying rows in a source table which are missing from a target table

4. Immutable Time-Series Data
a. Timestamped rows which do not change once generated

b. Typical in IoT and industrial applications

Outline and Problem Statement
1. Introduction

1.1. Synchronization in Practice
1.2. Related Works
1.3. Overview of the Algorithm

2. Scenarios
2.1. Append-Only Data Streams
2.2. Backlogged Data

3. Strategies
3.1. Speed-First: Simple Syncs
3.2. No-Compromises Accuracy: Iterative Syncs
3.3. Best of Both Worlds: Corrective Syncs

Given several scenarios, which target-based immutable time-series synchronization strategies
best optimize run-time, bandwidth, and accuracy?

4. Experimental Results
4.1. Comparing Classes of Strategies

4.2. Ranking Strategies

5. Conclusion
5.1. Choosing a Strategy

5.2. Future Work

5.3. Summary

Chapter 1
Introduction

1.1 Synchronization in Practice
 1.1.1 Smart Buildings

 1.1.2 Environmental Observations

 1.1.3 Financial Transactions

1.2 Related Works
 1.2.1 Hashing Partitions

 1.2.2 Characteristic Polynomial Interpolation

 1.2.3 Bloom Filters

 1.2.4 Cuckoo Filters

1.3 Overview of the Algorithm
 1.3.1 The synchronize() Procedure

 1.3.2 The fetch() Function

 1.3.3 The filter() Function

 1.3.4 The insert() Function

Understanding the
synchronization context

1.1 Synchronization in Practice

1. Smart Buildings
a. Clemson University Facilities and CEVAC

i. Rapidly fetch, aggregate, and display

building data from many sources

ii. ~300 GB MSSQL table which grows by

tens of thousands of rows per day

2. Environmental Observations
a. NOAA and NASA

i. Joint Polar Satellite System (JPSS)

ii. Comprehensive Large Array-Data

Stewardship System (CLASS)

b. NWS

i. Public weather API

ii. noaa Meerschaum plugin

3. Financial Transactions
a. M1 Finance

i. Fraud-detection system
ii. Streams data from PostgreSQL via AWS

DMS into warehouse
iii. ~400 GB S3 bucket of Parquet files
iv. Process data with Amazon Redshift

Spectrum
b. Apex Clearing Corporation

i. Clearing house for M1 Finance
ii. Transactions history provided via a

simple datetime-bounded API
iii. apex Meerschaum plugin

1.2 Related Works

1. Hashing Partitions
a. [2010] Target-Based Database Synchronization

b. [2010] Synchronization Algorithms based on

Message Digest

2. Characteristic Polynomial Interpolation
a. [2002] CPISync

b. [2010] Partitioned-CPISync

c. [2012] Priority CPISync

d. [2013] Efficient Synchronization over Broadcast

Networks

3. Space-Efficient Approximate Synchronization
a. [1970] Bloom Filters

i. [2002] Approximation Reconciliation Trees
ii. [2010] Invertible Bloom Filters

iii. [2011] Invertible Bloom Lookup Tables
iv. [2011] Difference Digest
v. [2014] Key-Value Storage System

Synchronization in Peer-to-Peer Environments
b. [2014] Cuckoo Filters

i. [2020] Adaptive Cuckoo Filters
ii. [2021] Conditional Cuckoo Filters

c. [2020] XOR Filters

These set reconciliation algorithms are generalized and as such are limited in capabilities.

This thesis is intended to demonstrate how the inclusion of common properties like a datetime axis greatly extends design possibilities and
optimization opportunities.

1.3 Overview of the Algorithm
Stage Description SQL Example

Fetch Retrieve samples from the source and
target databases.

SELECT *
FROM source_table
WHERE datetime > '2021-01-01 00:00:00'::TIMESTAMP

Filter Remove rows found in the target sample
from the source sample.

SELECT ss.*
FROM source_sample AS ss
LEFT JOIN target_sample AS ts ON (
 ss.id = ts.id
 AND ss.datetime = ts.datetime
)
WHERE ts.datetime IS NULL

Insert Add the filtered sample to the target table. COPY target_table (datetime, id, value)
FROM STDIN
WITH CSV

Simple Backtrack Sync
1. Determine the “reference time” (RT).

a. Use the newest target datetime value by default
(e.g. '2021-01-01 00:00:00'::TIMESTAMP)

2. Determine the “backtrack interval” (BTI).
a. By default, use a value of 1 minute.

3. Derive the “start time” (ST) by subtracting the BTI from
the RT.

'2021-01-01 00:00:00'::TIMESTAMP - INTERVAL '1 minute'

4. Fetch source and target samples with rows greater than
ST.

SELECT *
FROM table
WHERE datetime > ST

5. Filter out rows of the target sample from the source
sample.

6. Insert the filtered sample in the target table.

Chapter 2
Scenarios

A look at types of immutable
time-series data streams

2.1 Append-Only Data Streams

 2.1.1 A Single, Simple ID

 2.1.2 Multiple Simple IDs

2.2 Backlogged Data

 2.2.1 A Single ID with Known
 Backlogged Data

 2.2.2 Multiple IDs with Known
 Backlogged Data

 2.2.3 Unknown Backlogged Data

2.1 Append-Only Data Streams

2.1.1 A Single Append-Only ID

Attributes

1. The data stream has a datetime index.

2. Rows are immutable.

3. New rows always have later datetime values than existing rows.

Simple Sync

1. Determine the most recent datetime from the target table as the

“start time” (ST).

2. Fetch data from the source table newer than ST.

3. Insert the fetched data into the target table.

INSERT INTO source (
 datetime, id, value
) VALUES (
 '2021-01-01 00:00:00'::TIMESTAMP, 1, 1.0
);

SELECT *
FROM source
WHERE datetime > (
 '2021-01-01 00:00:00'::TIMESTAMP
)

2.1.2 Multiple Append-Only IDs

Attributes

1. The data stream has datetime and ID indices.

2. Rows are immutable.

3. New rows always have later datetime values than existing rows.

4. All sensors report within a known interval of each other.

Simple Backtrack Sync

1. Determine the most recent target datetime as the RT.

2. Subtract the BTI (e.g. 1 hour) to get the ST.

3. Fetch source and target samples newer than ST.

4. Filter target rows from source sample.

5. Insert the filtered sample into the target table.

SELECT *
FROM source
WHERE datetime >= (
 '2021-01-01 00:00:00' + INTERVAL '1 hour'
)

2.2 Backlogged Data

2.2.1 A Single ID with Known
 Backlogged Data
Attributes

1. The data stream has a datetime index.

2. Rows are immutable.

3. New rows usually have later datetime values than existing rows.

4. Backlogged data are inserted within a known interval.

Bounded Simple Sync

1. Determine the “start time” (ST).

2. Determine the “end time” (ET).

3. Fetch source and target samples between ST and ET.

4. Filter target rows from source sample.

5. Insert the filtered sample into the target table.

SELECT *
FROM source
WHERE datetime >= '2021-01-01 00:00:00'::TIMESTAMP
 AND datetime <= '2021-02-01 00:00:00'::TIMESTAMP

2.2.2 Multiple IDs with Known
 Backlogged Data

Discontinuous samples may be constructed by

bounding fetch queries by ID and datetime.

1. Multiple transactions

2. Single transaction

a. Sub-queries may be appended

b. Logic in the WHERE clause

c. Joining on a temporary table

SELECT *
FROM source
WHERE id = 1
 AND datetime >= '2021-01-01 00:00:00'::TIMESTAMP
 AND datetime <= '2021-01-02 00:00:00'::TIMESTAMP

Pros Cons

● Each individual query is “easy” to execute.
The simple logic of each query allows the source database to
optimize searching across the table’s indices.

● The time between queries may be spent on other
operations.
This time allows the potentially sensitive source database to
“cool down.”

● Fetching and filtering may happen in parallel.
While the syncing service is filtering two samples, more
samples may be concurrently fetched.

● An ongoing synchronization may be paused and
resumed.
A verification synchronization may be extended over a long
period of time to disperse the load on the databases.

● The source table might change between queries.
Because the table is not locked between queries, data may be
malformed.

● The synchronization may take longer to execute.
Although fetching and filtering in parallel will reduce execution
time, another query may lock the source table, halting the
ongoing synchronization process.

● It does not allow the database to fully optimize
the request.
Execution engines can reduce processing time when given the
full context of the query.

● It could overwhelm the database.
If not throttled appropriately, an onslaught of queries could
overload the databases’ active connections.

Building a Discontinuous Sample with Multiple Transactions

Building a Discontinuous Sample in a Single Transaction

Appending Sub-queries Logic in the WHERE Clause Joining a Temporary Table

SELECT *
FROM source
WHERE id = 1
 AND datetime >= ST1
 AND datetime <= ET1
UNION ALL
SELECT *
FROM source
WHERE id = 2
 AND datetime >= ST2
 AND datetime <= ET2

SELECT *
FROM source
WHERE (
 id = 1
 AND datetime >= ST1
 AND datetime <= ET1
) OR (
 id = 2
 AND datetime >= ST2
 AND datetime <= ET2
)

WITH bounds AS (
 SELECT *
 FROM (
 VALUES
 (1, ST1, ET1),
 (2, ST2, ET2)
) AS t(id, begin, end)
)
SELECT s.*
FROM source AS s
LEFT OUTER JOIN bounds AS b
 ON b.id = s.id
WHERE (
 s.datetime >= st.begin
 AND
 s.datetime <= st.end
) OR st.id IS NULL

2.2.3 Unknown Backlogged Data

Attributes

1. The data stream has datetime and ID indices.

2. Rows are immutable.

3. Rows with later datetime values are higher priority than those

with older datetime values.

4. Backlogged rows are inserted within an unknown interval at

unknown times.

Iterative Simple Sync

1. Determine the newest and oldest datetimes in the target table

(RT
0

 and RT
1

).

2. Determine an initial BTI (1 hour).

3. Sync rows newer than RT
0

.

4. Traverse the datetime axis by growing the BTI and syncing

intervals.

a. If possible, skip partitions with identical row-counts.

5. Sync rows older than RT
1

.

Chapter 3
Strategies

Methods designed with certain
priorities in mind

3.1 Speed First: Simple Syncs
 3.1.1 Simple Sync
 3.1.2 Simple Backtrack Sync
 3.1.3 Simple Slow-ID Sync
 3.1.4 Simple Append Sync
 3.1.5 Simple Join Sync

3.2 No-Compromises Accuracy: Iterative Syncs
 3.2.1 Iterative Simple Sync
 3.2.2 Daily Row-Count Sync
 3.2.3 Binary Search Sync
 3.2.4 Iterative CPISync

3.3 Best of Both Worlds: Corrective Syncs
 3.3.1 Simple Monthly Naïve Sync
 3.3.2 Simple Monthly Iterative Simple Sync
 3.3.3 Simple Monthly Daily Row-Count Sync
 3.3.4 Simple Monthly Binary Search Sync
 3.3.5 Simple Monthly Iterative CPISync

3.1 Speed First: Simple Syncs

Strategy Description SQL Example

Simple Sync Select rows newer than the latest target datetime value. SELECT *
FROM source
WHERE datetime >= '2021-01-01 00:00:00'::TIMESTAMP

Simple Backtrack Sync Select rows newer than a “walked back” latest target datetime
value.

SELECT *
FROM source
WHERE datetime >= (
 '2021-01-01 00:00:00'::TIMESTAMP
 - INTERVAL '1 DAY'
)

Simple Slow-ID Sync Select rows newer than the oldest datetime of each ID’s latest
datetime values.

WITH sync_times AS (
 SELECT id, MAX(datetime) AS sync_time
 FROM source
) SELECT MIN(sync_time)
FROM sync_times

Simple Append Sync Generate Simple Sync queries for each ID and append them into a
single transaction.

SELECT *
FROM source
WHERE id = 1
 AND datetime >= '2021-01-01 00:00:00'::TIMESTAMP
UNION ALL
SELECT *
FROM source
WHERE id = 2
 AND datetime >= '2021-01-01 09:00:00'::TIMESTAMP

Simple Join Sync Left join a temporary table of latest datetime values to emulate
Simple Sync per each ID.

WITH sync_times AS (
SELECT *
FROM (
 VALUES
 (1, '2021-01-01 00:00:00'::TIMESTAMP),
 (2, '2021-01-01 09:00:00'::TIMESTAMP)
) AS t(id, begin)
) SELECT source.*
FROM source
LEFT OUTER JOIN sync_times
 ON source.id = sync_times.id
WHERE source.datetime > sync_times.begin
 OR sync_times.id IS NULL

3.2 No-Compromises Accuracy: Iterative Syncs

Strategy Description SQL Example

Iterative Simple Sync For each partition of the datetime axis, compare
row-counts and perform Simple Sync when row-counts differ.

SELECT *
FROM source
WHERE datetime >= '2021-01-01 00:00:00'::TIMESTAMP
 AND datetime < '2021-02-01 00:00:00'::TIMESTAMP

Daily Row-Count Sync Build a table of days’ row-counts and perform Simple Sync on days
with differing row-counts.

SELECT
 DATE_TRUNC('day', datetime) AS days,
 COUNT(*) AS rowcount
FROM table
WHERE datetime >= '2021-01-01 00:00:00'::TIMESTAMP
GROUP BY days

Binary Search Sync For each partition of the datetime axis, compare
row-counts and recursively binary search partitions with
different row-counts until sufficiently small intervals are
encountered. Perform Simple Sync on the small intervals.

SELECT *
FROM source
WHERE datetime >= '2021-01-01 00:00:00'::TIMESTAMP
 AND datetime < '2021-01-02 00:00:00'::TIMESTAMP

Iterative CPISync For each partition of the datetime axis, compare row-counts and
perform CPISync when row-counts differ.

WITH RECURSIVE t(c) AS (
 SELECT (-1 - EXTRACT(EPOCH FROM datetime) - 1609459200)::BIGINT
 FROM table
 WHERE id = 1
 AND datetime >= '2021-01-01 00:00:00'::TIMESTAMP
 AND datetime = '2021-01-02 00:00:00'::TIMESTAMP
), r(c, n) AS (
 SELECT t.c, row_number() OVER ()
 FROM t
), p(c, n) AS (
 SELECT c, n
 FROM r
 WHERE n = 1
 UNION ALL
 SELECT (r.c * p.c) % 494101, r.n
 FROM p
 JOIN r ON p.n + 1 = r.n
) SELECT c
FROM p
WHERE n = (SELECT MAX(n) FROM p)

Caveats of CPISync

1. CPISync fundamentally works with integers.

2. CPISync can be computationally demanding if the range of values is large.

3. Individual IDs must be synchronized separately.

4. An acceptable interval size depends on the temporal resolution.
a. The tested implementation uses 1-second resolution.

3.3 Best of Both Worlds: Corrective Syncs

Strategy Description

Simple Monthly Naïve Sync Perform Simple Sync daily and Naïve Sync monthly to intermittently “flush” the pipes.

Simple Monthly Iterative Sync Perform Simple Sync daily and Iterative Simple Sync monthly to catch backlogged rows.

Simple Monthly Daily Row-Count Sync Perform Simple Sync daily and Daily Row-Count Sync monthly to catch backlogged rows.

Simple Monthly Binary Search Sync Perform Simple Sync daily and Binary Search Sync monthly to catch backlogged rows.

Simple Monthly Iterative CPISync Perform Simple Sync daily and Iterative CPISync monthly to catch backlogged rows.

Chapter 4
Experimental

Results
Strategies’ performances in a

simulated environment

4.1 Comparing Classes of Strategies

 4.1.1 Establishing a Baseline: Simple Sync vs. Naïve Sync

 4.1.2 Comparing Simple Syncs

 4.1.3 Comparing Iterative Syncs

 4.1.4 Comparing Corrective Syncs

4.2 Ranking Strategies

 4.2.1 One Metric

 4.2.2 Two Metrics

 4.2.3 Three Metrics

Performance Metrics

1. Run-time
The duration in seconds of each synchronization.

2. Bandwidth
The number of rows fetched from the source database.

3. Accuracy
The ratio of the number of correctly synchronized rows to the number of all source rows.

Figure Interpretation

Daily metrics line graphs
The daily line graphs represent the strategies’

daily performances to illustrate their behaviors.

“Lower is better” for run-time and bandwidth.
“Higher is better” for accuracy.

Figure Interpretation

Summary bar charts
The bar charts compare the aggregated values of

the daily line graphs:

“Lower is better” for the total run-time and rows fetched and

“higher is better” for the average accuracy rate.

● Total number of seconds

● Total number of rows fetched

● Average accuracy rate

Figure Interpretation

Summary radar charts
The radar charts are structured as intuitive
visual representations of the “skills” of each
technique.

“Higher is better” for every metric.

● Accuracy is the same (0 to 100%)

● Run-time and bandwidth are normalized to

a scale between the performance of Simple

Sync and fifteen times worse performance.

Figure Interpretation
Choice Index bar charts
The Choice Index is the weighted average of the normalized

values presented in the summary radar charts.
“Higher is better” for every metric.

Tested Scenarios

1. Single append-only
a. A single ID grows a table by one record per hour for 1 year.
b. Nothing is ever backlogged.

2. Multiple (large-N) append-only
a. A large number of IDs (100) grow a table one record per ID per hour for 1 year.
b. Nothing is ever backlogged.

3. Single known backlog
a. A single ID regularly grows a table, with each record having a probability of an “outage.”
b. Records which are detected as occurring during the “outage” are later backlogged into the source table within a

known interval (24 hours).

4. Unknown backlog
a. An unknown number of IDs (3) grow a table by an unknown frequency (one record per ID per hour for 1 year).
b. Records are backlogged with an unknown frequency over an unknown interval.

4.1 Comparing Classes of Strategies

Simple Syncs

Simple Syncs Daily Performance
“Lower is better” for run-time and bandwidth.
“Higher is better” for accuracy.

Simple Syncs Performance Summary
“Lower is better” for run-time and bandwidth.
“Higher is better” for accuracy.

Simple Syncs Performance Summary (large N)
“Lower is better” for run-time and bandwidth.
“Higher is better” for accuracy.

Simple Syncs Relative Performances
“Higher is better” for every metric.

Iterative Syncs

Iterative Syncs Daily Performance
“Lower is better” for run-time and bandwidth.
“Higher is better” for accuracy.

Iterative Syncs Performance Summary
“Lower is better” for run-time and bandwidth.
“Higher is better” for accuracy.

Bounded vs Unbounded Iterative Syncs
“Lower is better” for run-time and bandwidth.
“Higher is better” for accuracy.

Iterative Syncs Relative Performances
“Higher is better” for every metric.

Corrective Syncs

Corrective Syncs Daily Performance
“Lower is better” for run-time and bandwidth.
“Higher is better” for accuracy.

Corrective Syncs Daily Performance (bounded)
“Lower is better” for run-time and bandwidth.
“Higher is better” for accuracy.

Corrective Syncs Performance Summary
“Lower is better” for run-time and bandwidth.
“Higher is better” for accuracy.

Corrective Syncs Performance Summary (bounded)
“Lower is better” for run-time and bandwidth.
“Higher is better” for accuracy.

Corrective Syncs Relative Performances
“Higher is better” for every metric.

4.2 Ranking Strategies

Limitations of the Summary Bar Charts “Lower is better” for run-time and bandwidth.
“Higher is better” for accuracy.

4.2.1 One Metric “Higher is better” for every metric.

4.2.2 Two Metrics “Higher is better” for every metric.

4.2.3 Three Metrics “Higher is better” for every metric.

Chapter 5
Conclusion

Summarizing our findings and
looking forward

5.1 Choosing a Strategy

 5.1.1 Identify the Scenario

5.2 Future Work

 5.2.1 Additional Strategies

 5.2.2 Time-Series Properties

 5.2.3 Experiment Design

5.3 Summary

Choosing a Strategy

Identify the Scenario

1. How many IDs do you have?
2. Do you know when data are backlogged, if at all?
3. What is the frequency of source database?

● Append Only
○ Single ID: Simple Sync
○ A few IDs: Simple Join Sync
○ Many IDs: Simple Sync

● Known Backlog
○ Simple Backtrack Sync

● Unknown Backlog
○ It depends.

Rank Your Priorities

1. Is perfect accuracy a requirement?
2. How cheap is bandwidth?
3. Will you be synchronizing often?

Summary

● Simple Sync
○ Minimal run-time and bandwidth

○ Decent accuracy

● Daily Row-Count Sync
○ Minimal run-time and bandwidth

○ Perfect accuracy

● Simple Monthly Iterative Simple
Sync (bounded)

○ Balance between run-time,

bandwidth, and accuracy

Summary (visualized)

Future Work

● Additional Strategies
○ Fetch Strategies
○ Filter Strategies
○ Insert Strategies
○ Further Optimizations

● Time-Series Properties
○ Mutability
○ Frequency, Timescale, Resolution

● Experiment Design
○ Evaluation Metrics
○ Scenario Simulations

