Meares 1

CEVAC Python Package Intellectual Disclosure

Bennett Meares, 22 July 2020

Table of Contents

T oY oo LU T o o o P PP 2
CEVAC Pipes Paradigm. ... ettt e e e e e e e es 2
Problems and SOIULIONS. ... e 2
Problem 1: Large Data VOIUMES.coun it 2
SOIUtioN 1: PartitioNing. ..o 2
Problem 2: Stress on INfrastruCture. 2
Solution 2: Caching System Scheduler..........ooiiiiiii e 2
Problem 3: Inconsistent Data SOUICES........cuuiiiiiiiiiiiic e 3
Solution 3: CEVAC Interface SyStem.... ..o 3
Problem 4: Raw Data Needs Aggregation.........cooeiuiiiiiiiiiiiee e 3
SOIULION 4: CUSEOM PiPES. .. i e e e e 3
Problem 5: AdmMiNisStration... ... 5
SOIULION 581 ACHIONS. ... e e e 5
Solution 5b: Administrative CoNSOle. ..o 5
Problem 6: Providing Pipes TO DeVelopers. ... 6
Solution 6a: PIPe ODJECES.u e 6
Solution 6b: CEVAC REST APL....uuiiiiie et eeane 6
Problem 7: LiVe Data.......oocuiiiiiiiii et 7

Solution 7: Live System Scheduler.........oiiiiii e 8

Meares 2

Introduction

The CEVAC Python package is the foundational software library behind the CEVAC
system, developed by Bennett Meares from May 2019 to July 2020. It orchestrates
back-end processes like caching historical and live data and efficiently provides
access to CEVAC data sets.

CEVAC Pipes Paradigm
CEVAC Pipes are collections of views, some of

Building Metric Age Format which are regularly materialized into on-disk
cache tables. This design allows for high
performance access to pre-aggregated data
sets.

WATT
L TEmMP

VIEW Every pipe must have a HIST_VIEW definition
CACHE | in order to be processed (see Solution 4 for

Figure 1: CEVAC Pipes contain collections of more information).
views identified as Ages.

Problems and Solutions

Problem 1: Large Data Volumes S
The amount of available data is too large to handle at once. Facilities Data

~4.5 billion

Solution 1: Partitioning

I
Pipes partition data into a standard format: by building and metric JI_?:@
(Figures 1, 2). This reduces overhead, increases availability, and L
makes analysis easier. A e

Q.:?
WATT_TEMP

~50 million

~2 million ~4 million

Figure 2: Pipes are
fundamentally partitioned by

Problem 2: Stress on Infrastructure building and metric.
Large queries are stressful on critical Facilities infrastructure.

Solution 2: Caching System Scheduler

Pipes are cached by intermittently by the Caching System, thereby spreading the
demand of large requests among many small, lightweight queries (Figure 3).

wanpipes [[T TTTTTT I T TN TIT T CET T O T T T LT T T T T

Without Pipes | Data Source 1 | Data Source 2 Data Source 3

A 4

<
<«

Figure 3: Pipes are cached by the caching scheduler, which balances the load among data sources.

Meares 3

Problem 3: Inconsistent Data Sources
Each data source has a different schema.

Solution 3: CEVAC Interface System

Standard data streams are defined by implementing the CEVAC Interface. Once a
data source is applied to the interface, its Pipes inherit the standard Age
aggregations and may be cached the same as any other Pipe.

The CEVAC Interface is used to generate Definitions for Pipes (Figure 4) as well as
connect and update remote sources (such as pipes from Facilities’ Oracle Servers).

| Register meta-schema
column names.

CEVAC_METRIC
Metric UnitOfMeasurelD InterfaceKey

coz % | Jomnson

6 | omson

WATER & | Jomson

CEVAC_BUILDING_INFO
BuildingSName BuildingKey

Asc %ADX:ACAD%

If base Metric, generate PXREF
from keys linking
BuildingSName and Metric.

Meta-schema
Name. . Schema Name

COOPER [%ADX:C[OLJ[O-1%|

WATT | %ADX:WATT%

CEVAC_[BuildingSName]_
[Metric]_PXREF

PointSlicelD Alias

1 ClemsonADX:. SQL definition generated for Pipe's HIST_VIEW table.

2 GlemsonADX:

IDName PointSlicelD

UTCDateTime

CREATE VIEW CEVAC_[BuildingSName]_[Metric] _HIST_VIEW AS
SELECT a.PointSliceID, a.UTCDateTime, a.Actualvalue, x.Alias

3 (ClemsonADX:

Johnson Controls
Data Source

DataName | ActualValue

AliasName Alias

FROM tblActualvalueFloat AS a
INNER JOIN CEVAC_[BuildingSName]_[Metric]_{P}XREF AS x

If aggregate Metric, skip PXREF ON x.PointSliceID = a.PointSliceID

and generate SQL definition.

Figure 4: The CEVAC Interface normalizes data sources' schemata so that the CEVAC system can
handle all Pipes, regardless of origin.

Problem 4: Raw Data Needs Aggregation
The raw data must be aggregated in order to see relationships and trends.

Solution 4: Custom Pipes

3

v

Custom definitions may be used for Pipes,
and Pipes may be chained together to

Pipe A

mn easily and efficiently create complex
aggregations (Figure 5).

Data Source A

e

Consider the Pipe ALL UTILITIES (Figure

Pipe C

6, Table 1). The definition aggregates raw
meter data from Facilities and Schneider

Electric into a comprehensive overview of

Pipe B

— each building’s monthly usage, ranking,
and carbon emissions.

Data Source B

Figure 5: Pipes may source from other Pipes. In this
example, Pipe C is derived from Pipes A and B, which
each derive from separate data sources.

Meares 4

ALL_UTILITIES_HIST

- PipeName Buldngstame Metric Date
ALL_SENERGY_HIST sscomxen| ASC | CHWKBTU | 20200101
SourcelD TimeStampUTC Value ALL_SENERGY_MONTH_METERS_HIST PR SENERGY | 2020.0101
1 | 20200101 000000 | 100000 SourcelD begin_date end date total_usage usage cstem | ASC STEAM 20200101
2 | 202001:0100:0000 | 200000 1 [202001-01 000000 20200131 230000 | 7440 7440 r— = YT R
3 | 2020010100000 | 50000 2 [202001010000:00| 20200131 230000 | 7440 7440 e WA SenNERGY | 20200101
1| 2020001010000 | 100010 3 [20200101 0000:00| 20200131 230000 | 7440 7440 Wt | WA SEAn 20200101
2 | 2020010101000 | 200010 1 |202002.010000:00| 20200229 2300:00 | 14400 6960 change_ normalized_
3 | 2020001010000 | 50010 2 20200201 00:00:00| 20200229 23:0000 | 14400 6960 2:::: : M::::m P 39;:‘;‘:;;,‘03 2;:::‘;:,::;:7
1 | 20200101 020000 | 100020 3 |[20200201 00:00:00| 2020.02.29 23:0000 | 14400 6960 216442600 | 74375 | 20.101527004957902 | 21250 665762016746
2 2020:01:01,02:0000; | 200020 50647.0 | 8161330333 | 62.057261885312855 | 45332.82980722104
3 | 2020001020000 | 50020 4769000 | 816,15 | 564.3288611162164 | 4268522330453961

11470769199 7430 [154.38451144010742 | 112777.68560699846

3ES900 | 61615 | 427.1151136433254 | 312007.5005164492
Weighted_normalized_ normaized_
reading ‘monthly_change. monthly_emissions. t0tal emisslons
23278500 0751972415668494 | 1270.82246401323 1020104421147
2007108693 | 0551242467574659 | 17110.603538152085 | 1930391.6304720
7392760 T1754915028450906 | 52801.78760447227 | 861077.8215055519
ALL_METERS_HIST
92133000
meter id editdate reading
satas2ieee | 1 1360314 29601
oW1t | 20200113 162312 | 1000
3140700 4 4134157406711 | 3861
Ws222 | 20200113 1631:54 | 2000
rank out_of weighted_rank weighted_out_of
ST933 | 20200113 17:02:10 | 3000
Facilities Meter Data 32 3 30 £
oW1 | 20200214 16:2001 | 1100
) 3 2 El
Ws222 | 20200214 162941 | 2100
2 2 2 2
STa | 20200214 165925
5 B 4 E)
B B s El
0 2 2 2

Figure 6: The Pipe ALL_UTILITIES complexly aggregates raw meter data from Schneider Electric and
Facilities to calculate normalized and weighted monthly usages, emissions, and rankings for each
building and metric.

Table 1: The many aggregations in the custom Pipe ALL_UTILITIES are derived from raw meter data.

BuildingSName / Metric / PipeName [Standard CEVAC building and metric identifiers

Date Month and year (e.g. 2020-01-01)

change Difference between this month’s meters sum and the previous month’s. Accounts for
rollovers and resets.

hour offset Average number of hours between last month’s meter readings and this month’s.
change over time Average hourly usage (change / hour offset).
normalized monthly change Average hourly usage multiplied by the average number of hours in a month

(change over time * 730.5).

reading Simulated master meter reading for the building (rolling sum of change).

weighted normalized The normalized monthly change weighted by the square footage of the building

monthly_change (normalized monthly change / square feet).

normalized monthly emissions Tons of CO; released per normalized month (normalized monthly usage *
EmissionScalar).

total emissions Total tons of CO, released to date (reading * EmissionScalar).

rank / weighted rank Placement of a building’s normalized monthly usage in comparison with other buildings
(partitioned by Metric and Date). The value weighted rank is weighted by square
footage.

out of / weighted out of Number of buildings and metrics reporting for the current month and metric.

Meares 5

Problem 5: Administration
Pipes must be managed, maintained, and monitored.

Solution 5a: Actions

The CEVAC Package contains numerous Actions which may be applied to Pipes.
Actions share a standard set of arguments and may be triggered via the command-
line interface.

For example, the command
python -m CEVAC -x update cache
translates to “execute the update_cache method for all existing Pipes”.

Pipes may be explicitly listed with -b and -m flags and filtered with the - -params
flag. Consider the table below containing several example commands and their
explanations (Table 2).

Table 2: The CEVAC Python Package uses a versatile argument system to manage Pipes.

Command Description

python -m CEVAC -x bootstrap -b ASC,WATT -m WAP|Bootstrap the Pipes ASC_WAP and
WATT_WAP.

python -m CEVAC -x live --params isProduction:1|Run the live data scheduler for all
production Pipes.

Solution 5b: Administrative Console

The CEVAC Administrative Console CEVAC Administrative Console
provides a graphical interface for .:d
managing Pipes. The Console translates ® neu

the user’s actions into the standard '

arguments defined above.

For example, in the pictured screenshot
(Figure 7), clicking “Build Pipe” translates
to the arguments

Push to LASR Delete

-X bootstrap -b WATT -m CO2

Alerts

Figure 7: The CEVAC Administrative Console allows users to
easily interact with the CEVAC Python Package.

Meares 6

Problem 6: Providing Pipes To Developers
Developers need to access CEVAC data to build applications.

Solution 6a: Pipe Objects

Developers use the CEVAC Python Package to access data through Pipe objects. The
package includes a getPipes () method for constructing Pipe objects. Referencing
the .data member of a Pipe’s Age fetches and maintains the table’s data. Consider
the code snippet below:

>>> import CEVAC
>>> pipes = CEVAC.getPipes()
>>> pipes['WATT']['SENERGY']['HIST'].data

Pipe objects fetch tables on demand and store them as pandas DataFrames (a
useful format for data analysis) and index DataFrames by ID and date-time
columns. These DataFrames may be stored in-memory or on-disk.

Pipe objects are designed to sync with the CEVAC database to efficiently provide the
most up-to-date data on demand. Pipes may be configured to sync data from the
CEVAC REST API (see Solution 6b) or directly from the CEVAC SQL Server.

Solution 6b: CEVAC REST API
The CEVAC APl is

JSON RawData Headers JSON RawData Headers

i e e T RESTful API for serving
e CEVAC data and is
e R analogous to the
o 0 e functionality of
[getPipes () (Figure 8).

¥ SENERGY
b SENERGY MONTH BILLING {-} Alias: "RM 100 / Temp"

¥ SEMERGY MONTH COMPARE: {.} UTCDateTime "2020-87-20T14:15:00.0802" . 0
» {-} ETDateTime "2020-67-20T10:15:00.0080Z" The API IS deS|g ned to
» SPOWER COND {w} Actualvalue 69.51707 .
be scaled to meet high
DAY: "CEVAC_ASC_TEMP_DAY" PointSliceID 58
DAY VIEW "CEVAC ASC TEMP DAY VIEW" Alias “RM 101 / Cooling SP" dema nd a nd prese rVeS
HIST "CEVAC_ASC_TEMP_HIST" UTCDateTime "2020.87-20T14:15:06.0802" .
HIST VIEW "CEVAC ASC TEMP HIST VIEW" ETDateTime "2020-07-20T10:15:00.0002" me mory by Ca Ch I n g
LATEST "CEVAC ASC TEMP LATEST" ActualValue 82 . 0 0
LATEST BROKEN "CEVAC_ASC TEMP_LATEST BROKEN" v3 PI pes O n d |Sk (Flg u re
LATEST FULL: "CEVAC ASC TEMP LATEST FULL" PointSliceID 59
LIVE "CEVAC ASC TEMP LIVE" Alias “RM 101 / Heating SP" 1 1) .
LIVE_STORE “CEVAC_ASC_TEMP_LIVE STORE" UTCDateTime "2020-87-20T14:15:00.0080Z"
NEWEST "CEVAC ASC TEMP NEWEST" ETDateTime "2020-07-20710:15:00.000Z"
OLDEST "CEVAC ASC TEMP OLDEST" ActualValue 61
PXREF "CEVAC_ASC_TEMP_PXREF" v 4
XREF "CEVAC ASC TEMP XREF" PointSliceID 61
{.} Alias: “RM 101 / Temp"
{1 UTCDateTime "2020-07-20T14:15:00.0002"
{.} ETDateTime "2020-67-20T10:15:00.0002"
0f Ssums {.} Actua 71.5456543
{} v5
PointSliceID 64
Alias: “RM 182 / Cooling SP"

Figure 8: The CEVAC REST API provides easy access to CEVAC Pipes.

Consider the table below which demonstrates the
performance improvements of using the CEVAC API
over directly accessing the CEVAC database (Table

3, Figure 10).
Table 3: The CEVAC API efficiently serves JSON data.
Test Time

CEVAC API (warm cache) 13.950 seconds

CEVAC API (cold cache) 42.392 seconds

Direct SQL Query 56.185 seconds

Meares

% Total

Time
Left

% Received % Xferd Average Speed Time Time
Dload Upload Total Spent

68.2M 0 0:00:13 0:00:13

Current
Speed
100 892M 100 8%2M 0O 0 - 233M
0m13.950s
ono. 1865
om1.160s

real

user

sys
% Total Time
Spent

0:00:41 --:--:--

% Received % Xferd Average Speed Time
Dload Upload Total

21.2M 0 0:00:41

Current
Speed
100 892M 100 892M © 0 247M
oma2.392s

0mo.180s

oml.080s

real
user
sys

Putputting to /cevac/cache/deleteme.csv
xecuting query

SET NOCOUNT ON
SELECT * FROM CEVAC_WATT_C02 HIST

0m56.185s
0m45.237s
0m9.412s

Figure 10: Screenshot of the figures

ETL Back-end

presented in Table 3.

API Middle-tier

Web clients

Host A
— API Process handles requests.
/ Swarm A If requested data is up-to-date, return cache.
TGOl Else refresh and return new cache. [~ 7777777
API Process
API Process
Pipes Group A A Fiocess HTTP Requests
==—a s API Process GET /pipeS/NATT/WAP/ b== == ===~
e . .
—_— Caching System Container LATEST/data HTTP/1.1
<« 1
Data Source A . APT Container 1
. '
— Caching Commands API Process '
' API Process !
'
S \ 4 API Process [N
[API Process.)
API Process '
Data Source B f:lr;i?:led Check table Send request to host. 1
=) update time. Y J
> < — i ;
oad Balancer 0
—— CEVAC saL i B - e
_—
Data S c out of date. Host B E
ata source —
A (Ar—— Receive response from host !
. g J
. . API Container '
e Caching Commands API Process L——
Y d AP Process J
API Process '
Data Source D Caching System Container APl Protacs
API Process

e
Pipes Group B

API Container

API Process

API Process

API Process
API Process

API Process

Figure 11: The CEVAC REST API protects the SQL Server by leveraging CEVAC Python to cache Pipes.

Problem 7: Live Data

Customers want to know the real-time status of certain Pipes on-demand. However,
Johnson Controls Pipes update irregularly, and the caching system takes
approximately 15 minutes to update all Pipes. Therefore data may not be available
for several hours (until the Johnson Controls data source contains the latest

historical data).

Meares 8

Solution 7: Live System Scheduler

Johnson Controls Pipes contain the Age LIVE,

Caching System Live System which is updated every 5 minutes directly from

o the JCI Metasys API. LIVE tables are created by the
Lo Live System (Figure 12), which emits live data via

MQTT, a publish-subscribe protocol (Figure 13),
and stores live data for 24 hours, reducing the

JCI Data
Source

Metasys frequency of older stored live data to 1 hour
@ @ (Figure 14).
15 minutes Plpe 5 minutes » MQTT Explorer
v ation Edit View
Q search... @ DisconnECT &
HIST @

v wfic-cevacl.clemson.edu

Value R

Qos: 0
07/21/2020
3:50:30 PM

A 4 Lm
LATEST LIVE R
LIVE if exists, otherwise LATEST > FLUOR (3 topics, ¢
»GRC (4 to
»HARDIN (
NEWEST

(

Figure 12: The Caching System updates Pipes'
HIST tables, and the Live System creates LIVE S A—

tables from the JCl Metasys API. »ENERGY (1 topic, 18 messa % History

HUM i 3 a

Figure 13: Clients can subscribe to live data through
WebSockets using MQTT.

CEVAC Administrative Console
a1 c 62

® Production

@ Registered

@ New

WATT I CO2 (ppm)

PointSlicelD Alias ETDateTime ActualValue

Auto SQL Cache Auto SAS Cache Production

Execute Actions O Append Flush

apply_quorum
Csqu sas

Push to LASR Delete

Table Actions XREF Actions Building Actions

View Points Find Building Keys

View Buildings

View Broken Rebuild PXREF 9104

View Last 24 Hours

Upload XREF
View Last 1000 Rows

View Definition

Alerts Actions. Misc Tools

View Alerts Report View Disk Usage

Figure 14: An example of LIVE data for the Pipe WATT_CO2.

	Introduction
	CEVAC Pipes Paradigm

	Problems and Solutions
	Problem 1: Large Data Volumes
	Solution 1: Partitioning

	Problem 2: Stress on Infrastructure
	Solution 2: Caching System Scheduler

	Problem 3: Inconsistent Data Sources
	Solution 3: CEVAC Interface System

	Problem 4: Raw Data Needs Aggregation
	Solution 4: Custom Pipes

	Problem 5: Administration
	Solution 5a: Actions
	Solution 5b: Administrative Console

	Problem 6: Providing Pipes To Developers
	Solution 6a: Pipe Objects
	Solution 6b: CEVAC REST API

	Problem 7: Live Data
	Solution 7: Live System Scheduler

