
Meares 1

CEVAC Python Package Intellectual Disclosure
Bennett Meares, 22 July 2020

Table of Contents
Introduction.. 2

CEVAC Pipes Paradigm...2

Problems and Solutions..2

Problem 1: Large Data Volumes...2

Solution 1: Partitioning...2

Problem 2: Stress on Infrastructure..2

Solution 2: Caching System Scheduler...2

Problem 3: Inconsistent Data Sources..3

Solution 3: CEVAC Interface System...3

Problem 4: Raw Data Needs Aggregation...3

Solution 4: Custom Pipes..3

Problem 5: Administration..5

Solution 5a: Actions..5

Solution 5b: Administrative Console...5

Problem 6: Providing Pipes To Developers...6

Solution 6a: Pipe Objects..6

Solution 6b: CEVAC REST API..6

Problem 7: Live Data..7

Solution 7: Live System Scheduler...8

Meares 2

Introduction
The CEVAC Python package is the foundational software library behind the CEVAC
system, developed by Bennett Meares from May 2019 to July 2020. It orchestrates
back-end processes like caching historical and live data and efficiently provides
access to CEVAC data sets.

CEVAC Pipes Paradigm
CEVAC Pipes are collections of views, some of
which are regularly materialized into on-disk
cache tables. This design allows for high
performance access to pre-aggregated data
sets.

Every pipe must have a HIST_VIEW definition
in order to be processed (see Solution 4 for
more information).

Problems and Solutions
Problem 1: Large Data Volumes
The amount of available data is too large to handle at once.

Solution 1: Partitioning

Pipes partition data into a standard format: by building and metric
(Figures 1, 2). This reduces overhead, increases availability, and
makes analysis easier.

Problem 2: Stress on Infrastructure
Large queries are stressful on critical Facilities infrastructure.

Solution 2: Caching System Scheduler

Pipes are cached by intermittently by the Caching System, thereby spreading the
demand of large requests among many small, lightweight queries (Figure 3).

Figure 3: Pipes are cached by the caching scheduler, which balances the load among data sources.

Figure 1: CEVAC Pipes contain collections of
views identified as Ages.

Figure 2: Pipes are
fundamentally partitioned by
building and metric.

Meares 3

Problem 3: Inconsistent Data Sources
Each data source has a different schema.

Solution 3: CEVAC Interface System

Standard data streams are defined by implementing the CEVAC Interface. Once a
data source is applied to the interface, its Pipes inherit the standard Age
aggregations and may be cached the same as any other Pipe.

The CEVAC Interface is used to generate Definitions for Pipes (Figure 4) as well as
connect and update remote sources (such as pipes from Facilities’ Oracle Servers).

Problem 4: Raw Data Needs Aggregation
The raw data must be aggregated in order to see relationships and trends.

Solution 4: Custom Pipes

Custom definitions may be used for Pipes,
and Pipes may be chained together to
easily and efficiently create complex
aggregations (Figure 5).

Consider the Pipe ALL_UTILITIES (Figure
6, Table 1). The definition aggregates raw
meter data from Facilities and Schneider
Electric into a comprehensive overview of
each building’s monthly usage, ranking,
and carbon emissions.

Figure 5: Pipes may source from other Pipes. In this
example, Pipe C is derived from Pipes A and B, which
each derive from separate data sources.

Figure 4: The CEVAC Interface normalizes data sources' schemata so that the CEVAC system can
handle all Pipes, regardless of origin.

Meares 4

Table 1: The many aggregations in the custom Pipe ALL_UTILITIES are derived from raw meter data.

Column Description

BuildingSName / Metric / PipeName Standard CEVAC building and metric identifiers

Date Month and year (e.g. 2020-01-01)

change Difference between this month’s meters sum and the previous month’s. Accounts for
rollovers and resets.

hour_offset Average number of hours between last month’s meter readings and this month’s.

change_over_time Average hourly usage (change / hour_offset).

normalized_monthly_change Average hourly usage multiplied by the average number of hours in a month
(change_over_time * 730.5).

reading Simulated master meter reading for the building (rolling sum of change).

weighted_normalized_

monthly_change

The normalized monthly change weighted by the square footage of the building
(normalized_monthly_change / square_feet).

normalized_monthly_emissions Tons of CO2 released per normalized month (normalized_monthly_usage *
EmissionScalar).

total_emissions Total tons of CO2 released to date (reading * EmissionScalar).

rank / weighted_rank Placement of a building’s normalized monthly usage in comparison with other buildings
(partitioned by Metric and Date). The value weighted_rank is weighted by square
footage.

out_of / weighted_out_of Number of buildings and metrics reporting for the current month and metric.

Figure 6: The Pipe ALL_UTILITIES complexly aggregates raw meter data from Schneider Electric and
Facilities to calculate normalized and weighted monthly usages, emissions, and rankings for each
building and metric.

Meares 5

Problem 5: Administration
Pipes must be managed, maintained, and monitored.

Solution 5a: Actions

The CEVAC Package contains numerous Actions which may be applied to Pipes.
Actions share a standard set of arguments and may be triggered via the command-
line interface.

For example, the command

python -m CEVAC -x update_cache

translates to “execute the update_cache method for all existing Pipes”.

Pipes may be explicitly listed with -b and -m flags and filtered with the --params
flag. Consider the table below containing several example commands and their
explanations (Table 2).

Table 2: The CEVAC Python Package uses a versatile argument system to manage Pipes.

Command Description

python -m CEVAC -x bootstrap -b ASC,WATT -m WAP Bootstrap the Pipes ASC_WAP and
WATT_WAP.

python -m CEVAC -x live --params isProduction:1 Run the live data scheduler for all
production Pipes.

Solution 5b: Administrative Console

The CEVAC Administrative Console
provides a graphical interface for
managing Pipes. The Console translates
the user’s actions into the standard
arguments defined above.

For example, in the pictured screenshot
(Figure 7), clicking “Build Pipe” translates
to the arguments

-x bootstrap -b WATT -m CO2

Figure 7: The CEVAC Administrative Console allows users to
easily interact with the CEVAC Python Package.

Meares 6

Problem 6: Providing Pipes To Developers
Developers need to access CEVAC data to build applications.

Solution 6a: Pipe Objects

Developers use the CEVAC Python Package to access data through Pipe objects. The
package includes a getPipes() method for constructing Pipe objects. Referencing
the .data member of a Pipe’s Age fetches and maintains the table’s data. Consider
the code snippet below:

Pipe objects fetch tables on demand and store them as pandas DataFrames (a
useful format for data analysis) and index DataFrames by ID and date-time
columns. These DataFrames may be stored in-memory or on-disk.

Pipe objects are designed to sync with the CEVAC database to efficiently provide the
most up-to-date data on demand. Pipes may be configured to sync data from the
CEVAC REST API (see Solution 6b) or directly from the CEVAC SQL Server.

Solution 6b: CEVAC REST API

The CEVAC API is a
RESTful API for serving
CEVAC data and is
analogous to the
functionality of
getPipes() (Figure 8).

The API is designed to
be scaled to meet high
demand and preserves
memory by caching
Pipes on disk (Figure
11).

>>> import CEVAC
>>> pipes = CEVAC.getPipes()
>>> pipes['WATT']['SENERGY']['HIST'].data

Figure 8: The CEVAC REST API provides easy access to CEVAC Pipes.

Meares 7

Consider the table below which demonstrates the
performance improvements of using the CEVAC API
over directly accessing the CEVAC database (Table
3, Figure 10).

Table 3: The CEVAC API efficiently serves JSON data.

Test Time

CEVAC API (warm cache) 13.950 seconds

CEVAC API (cold cache) 42.392 seconds

Direct SQL Query 56.185 seconds

Problem 7: Live Data
Customers want to know the real-time status of certain Pipes on-demand. However,
Johnson Controls Pipes update irregularly, and the caching system takes
approximately 15 minutes to update all Pipes. Therefore data may not be available
for several hours (until the Johnson Controls data source contains the latest
historical data).

Figure 10: Screenshot of the figures
presented in Table 3.

Figure 11: The CEVAC REST API protects the SQL Server by leveraging CEVAC Python to cache Pipes.

Meares 8

Solution 7: Live System Scheduler

Johnson Controls Pipes contain the Age LIVE,
which is updated every 5 minutes directly from
the JCI Metasys API. LIVE tables are created by the
Live System (Figure 12), which emits live data via
MQTT, a publish-subscribe protocol (Figure 13),
and stores live data for 24 hours, reducing the
frequency of older stored live data to 1 hour
(Figure 14).

Figure 12: The Caching System updates Pipes'
HIST tables, and the Live System creates LIVE
tables from the JCI Metasys API.

Figure 13: Clients can subscribe to live data through
WebSockets using MQTT.

Figure 14: An example of LIVE data for the Pipe WATT_CO2.

	Introduction
	CEVAC Pipes Paradigm

	Problems and Solutions
	Problem 1: Large Data Volumes
	Solution 1: Partitioning

	Problem 2: Stress on Infrastructure
	Solution 2: Caching System Scheduler

	Problem 3: Inconsistent Data Sources
	Solution 3: CEVAC Interface System

	Problem 4: Raw Data Needs Aggregation
	Solution 4: Custom Pipes

	Problem 5: Administration
	Solution 5a: Actions
	Solution 5b: Administrative Console

	Problem 6: Providing Pipes To Developers
	Solution 6a: Pipe Objects
	Solution 6b: CEVAC REST API

	Problem 7: Live Data
	Solution 7: Live System Scheduler

